BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28586128)

  • 1. Capturing Elusive Cobaltacycle Intermediates: A Real-Time Snapshot of the Cp*Co
    Sanjosé-Orduna J; Gallego D; Garcia-Roca A; Martin E; Benet-Buchholz J; Pérez-Temprano MH
    Angew Chem Int Ed Engl; 2017 Sep; 56(40):12137-12141. PubMed ID: 28586128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-valent cobalt catalysis: new opportunities for C-H functionalization.
    Gao K; Yoshikai N
    Acc Chem Res; 2014 Apr; 47(4):1208-19. PubMed ID: 24576170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cobalt catalysis involving π components in organic synthesis.
    Gandeepan P; Cheng CH
    Acc Chem Res; 2015 Apr; 48(4):1194-206. PubMed ID: 25854540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cobalt-Catalyzed Annulation of Salicylaldehydes and Alkynes to Form Chromones and 4-Chromanones.
    Yang J; Yoshikai N
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2870-4. PubMed ID: 26804050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of Key Organometallic Aryl-Co(III) Intermediates in Cobalt-Catalyzed C(sp
    Planas O; Whiteoak CJ; Martin-Diaconescu V; Gamba I; Luis JM; Parella T; Company A; Ribas X
    J Am Chem Soc; 2016 Nov; 138(43):14388-14397. PubMed ID: 27723326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HFIP-Assisted C-H Functionalization by Cp*Co
    Sanjosé-Orduna J; Sarria Toro JM; Pérez-Temprano MH
    Angew Chem Int Ed Engl; 2018 Aug; 57(35):11369-11373. PubMed ID: 29984879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation and comparison of the mechanistic steps in the [(Cp*MCl2)2] (Cp* = C5Me5; M = Rh, Ir)-catalyzed oxidative annulation of isoquinolones with alkynes.
    Wang N; Li B; Song H; Xu S; Wang B
    Chemistry; 2013 Jan; 19(1):358-64. PubMed ID: 23168678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations.
    Ackermann L
    Acc Chem Res; 2014 Feb; 47(2):281-95. PubMed ID: 23379589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C-H Functionalizations.
    Ye B; Cramer N
    Acc Chem Res; 2015 May; 48(5):1308-18. PubMed ID: 25884306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroremovable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C-H/N-H Activation with Internal Alkynes.
    Mei R; Sauermann N; Oliveira JCA; Ackermann L
    J Am Chem Soc; 2018 Jun; 140(25):7913-7921. PubMed ID: 29812927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cobalt-Catalyzed Oxidase C-H/N-H Alkyne Annulation: Mechanistic Insights and Access to Anticancer Agents.
    Mei R; Wang H; Warratz S; Macgregor SA; Ackermann L
    Chemistry; 2016 May; 22(20):6759-63. PubMed ID: 26992149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt(III)-Catalyzed C-6 Alkenylation of 2-Pyridones by Using Terminal Alkyne with High Regioselectivity.
    Mohanty SR; Prusty N; Gupta L; Biswal P; Ravikumar PC
    J Org Chem; 2021 Jul; 86(14):9444-9454. PubMed ID: 34227380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrroloindolone synthesis via a Cp*Co(III)-catalyzed redox-neutral directed C-H alkenylation/annulation sequence.
    Ikemoto H; Yoshino T; Sakata K; Matsunaga S; Kanai M
    J Am Chem Soc; 2014 Apr; 136(14):5424-31. PubMed ID: 24650237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of Cp*Co
    Sen M; Rajesh N; Emayavaramban B; Premkumar JR; Sundararaju B
    Chemistry; 2018 Jan; 24(2):342-346. PubMed ID: 29164708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unravelling Molecular Aspects of the Migratory Insertion Step in Cp*Co
    Sanjosé-Orduna J; Benet-Buchholz J; Pérez-Temprano MH
    Inorg Chem; 2019 Aug; 58(16):10569-10577. PubMed ID: 31247846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cp*Co
    Sakata K; Eda M; Kitaoka Y; Yoshino T; Matsunaga S
    J Org Chem; 2017 Jul; 82(14):7379-7387. PubMed ID: 28679046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate activation strategies in rhodium(III)-catalyzed selective functionalization of arenes.
    Song G; Li X
    Acc Chem Res; 2015 Apr; 48(4):1007-20. PubMed ID: 25844661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyridine N-Oxide vs Pyridine Substrates for Rh(III)-Catalyzed Oxidative C-H Bond Functionalization.
    Neufeldt SR; Jiménez-Osés G; Huckins JR; Thiel OR; Houk KN
    J Am Chem Soc; 2015 Aug; 137(31):9843-54. PubMed ID: 26197041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redefining the Mechanistic Scenario of Carbon-Sulfur Nucleophilic Coupling via High-Valent Cp*Co
    López-Resano S; Martínez de Salinas S; Garcés-Pineda FA; Moneo-Corcuera A; Galán-Mascarós JR; Maseras F; Pérez-Temprano MH
    Angew Chem Int Ed Engl; 2021 May; 60(20):11217-11221. PubMed ID: 33739577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation.
    Qi X; Li Y; Bai R; Lan Y
    Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.