These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 28586226)

  • 1. Elucidation of CuWO
    Gao Y; Hamann TW
    J Phys Chem Lett; 2017 Jun; 8(12):2700-2704. PubMed ID: 28586226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CuWO4 Nanoflake Array-Based Single-Junction and Heterojunction Photoanodes for Photoelectrochemical Water Oxidation.
    Ye W; Chen F; Zhao F; Han N; Li Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9211-7. PubMed ID: 27011376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge-Carrier Dynamics at the CuWO
    Shadabipour P; Raithel AL; Hamann TW
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50592-50599. PubMed ID: 33119249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper(II) tungstate nanoflake array films: sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting.
    Hu D; Diao P; Xu D; Xia M; Gu Y; Wu Q; Li C; Yang S
    Nanoscale; 2016 Mar; 8(11):5892-901. PubMed ID: 26912373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast Charge Carrier Dynamics in CuWO
    Grigioni I; Polo A; Dozzi MV; Ganzer L; Bozzini B; Cerullo G; Selli E
    J Phys Chem C Nanomater Interfaces; 2021 Mar; 125(10):5692-5699. PubMed ID: 35069964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved photoelectrochemical water oxidation by the WO3/CuWO4 composite with a manganese phosphate electrocatalyst.
    Nam KM; Cheon EA; Shin WJ; Bard AJ
    Langmuir; 2015 Oct; 31(39):10897-903. PubMed ID: 26371544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy.
    Zandi O; Hamann TW
    Nat Chem; 2016 Aug; 8(8):778-83. PubMed ID: 27442283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative hole collection for photoelectrochemical water oxidation with CuWO
    Gao Y; Hamann TW
    Chem Commun (Camb); 2017 Jan; 53(7):1285-1288. PubMed ID: 28067348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive photoelectrochemical methanol and water oxidation with hematite electrodes.
    Klahr B; Gimenez S; Zandi O; Fabregat-Santiago F; Hamann T
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7653-60. PubMed ID: 25804788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Onset potential behavior in α-Fe2O3 photoanodes: the influence of surface and diffusion Sn doping on the surface states.
    Shinde PS; Choi SH; Kim Y; Ryu J; Jang JS
    Phys Chem Chem Phys; 2016 Jan; 18(4):2495-509. PubMed ID: 26698132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water oxidation at hematite photoelectrodes: the role of surface states.
    Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J
    J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting.
    Klotz D; Grave DA; Rothschild A
    Phys Chem Chem Phys; 2017 Aug; 19(31):20383-20392. PubMed ID: 28721404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of Ultrathin Films of Hematite for Photoelectrochemical Water Splitting via H2 Treatment.
    Moir J; Soheilnia N; Liao K; O'Brien P; Tian Y; Burch KS; Ozin GA
    ChemSusChem; 2015 May; 8(9):1557-67. PubMed ID: 25650837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes.
    Zhong DK; Sun J; Inumaru H; Gamelin DR
    J Am Chem Soc; 2009 May; 131(17):6086-7. PubMed ID: 19354283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pivotal Role and Regulation of Proton Transfer in Water Oxidation on Hematite Photoanodes.
    Zhang Y; Zhang H; Ji H; Ma W; Chen C; Zhao J
    J Am Chem Soc; 2016 Mar; 138(8):2705-11. PubMed ID: 26859244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes.
    Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS
    ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved charge separation via Fe-doping of copper tungstate photoanodes.
    Bohra D; Smith WA
    Phys Chem Chem Phys; 2015 Apr; 17(15):9857-66. PubMed ID: 25776231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.