These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 28586226)

  • 21. Cold sprayed WO
    Haisch C; Schneider J; Fleisch M; Gutzmann H; Klassen T; Bahnemann DW
    Dalton Trans; 2017 Oct; 46(38):12811-12823. PubMed ID: 28937161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light induced formation of a surface heterojunction in photocharged CuWO
    Venugopal A; Smith WA
    Faraday Discuss; 2019 Jul; 215(0):175-191. PubMed ID: 31046044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of surface States in the oxygen evolution reaction on hematite.
    Iandolo B; Hellman A
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13404-8. PubMed ID: 25283270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water splitting with silver chloride photoanodes and amorphous silicon solar cells.
    Currao A; Reddy VR; van Veen MK; Schropp RE; Calzaferri G
    Photochem Photobiol Sci; 2004; 3(11-12):1017-25. PubMed ID: 15570389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface aspects of sol-gel derived hematite films for the photoelectrochemical oxidation of water.
    Herrmann-Geppert I; Bogdanoff P; Radnik J; Fengler S; Dittrich T; Fiechter S
    Phys Chem Chem Phys; 2013 Feb; 15(5):1389-98. PubMed ID: 23247669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoelectrochemical properties of SrNbO2N photoanodes for water oxidation fabricated by the particle transfer method.
    Urabe H; Hisatomi T; Minegishi T; Kubota J; Domen K
    Faraday Discuss; 2014; 176():213-23. PubMed ID: 25406767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A significant cathodic shift in the onset potential and enhanced photoelectrochemical water splitting using Au nanoparticles decorated WO3 nanorod array.
    Xu F; Yao Y; Bai D; Xu R; Mei J; Wu D; Gao Z; Jiang K
    J Colloid Interface Sci; 2015 Nov; 458():194-9. PubMed ID: 26218199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting.
    Wang L; Nguyen NT; Schmuki P
    ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of Photoanodes for Photocatalytic Water Oxidation by Combining a Heterogenized Iridium Water-Oxidation Catalyst with a High-Potential Porphyrin Photosensitizer.
    Materna KL; Jiang J; Regan KP; Schmuttenmaer CA; Crabtree RH; Brudvig GW
    ChemSusChem; 2017 Nov; 10(22):4526-4534. PubMed ID: 28876510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution.
    Chae SY; Sudhagar P; Fujishima A; Hwang YJ; Joo OS
    Phys Chem Chem Phys; 2015 Mar; 17(12):7714-9. PubMed ID: 25711207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CuO-Functionalized Silicon Photoanodes for Photoelectrochemical Water Splitting Devices.
    Shi Y; Gimbert-Suriñach C; Han T; Berardi S; Lanza M; Llobet A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):696-702. PubMed ID: 26651152
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with "Co-Pi"-coated hematite electrodes.
    Klahr B; Gimenez S; Fabregat-Santiago F; Bisquert J; Hamann TW
    J Am Chem Soc; 2012 Oct; 134(40):16693-700. PubMed ID: 22950478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron injection dynamics in high-potential porphyrin photoanodes.
    Milot RL; Schmuttenmaer CA
    Acc Chem Res; 2015 May; 48(5):1423-31. PubMed ID: 25938858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoelectrochemical water splitting using WO3 photoanodes: the substrate and temperature roles.
    Dias P; Lopes T; Meda L; Andrade L; Mendes A
    Phys Chem Chem Phys; 2016 Feb; 18(7):5232-43. PubMed ID: 26813492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments.
    Caccamo L; Cocco G; Martín G; Zhou H; Fundling S; Gad A; Mohajerani MS; Abdelfatah M; Estradé S; Peiró F; Dziony W; Bremers H; Hangleiter A; Mayrhofer L; Lilienkamp G; Moseler M; Daum W; Waag A
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8232-8. PubMed ID: 26953934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Back electron-hole recombination in hematite photoanodes for water splitting.
    Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR
    J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy.
    He W; Yang Y; Wang L; Yang J; Xiang X; Yan D; Li F
    ChemSusChem; 2015 May; 8(9):1568-76. PubMed ID: 25711390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting.
    Kang D; Kim TW; Kubota SR; Cardiel AC; Cha HG; Choi KS
    Chem Rev; 2015 Dec; 115(23):12839-87. PubMed ID: 26538328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.