These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28586438)

  • 21. Systematic benchmark of ancient DNA read mapping.
    Oliva A; Tobler R; Cooper A; Llamas B; Souilmi Y
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ADaM: augmenting existing approximate fast matching algorithms with efficient and exact range queries.
    Clement NL; Thompson LP; Miranker DP
    BMC Bioinformatics; 2014; 15 Suppl 7(Suppl 7):S1. PubMed ID: 25079667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the sensitivity of long read overlap detection using grouped short k-mer matches.
    Du N; Chen J; Sun Y
    BMC Genomics; 2019 Apr; 20(Suppl 2):190. PubMed ID: 30967123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AlignGraph2: similar genome-assisted reassembly pipeline for PacBio long reads.
    Huang S; He X; Wang G; Bao E
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33621981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory.
    Chaisson MJ; Tesler G
    BMC Bioinformatics; 2012 Sep; 13():238. PubMed ID: 22988817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid and precise alignment of raw reads against redundant databases with KMA.
    Clausen PTLC; Aarestrup FM; Lund O
    BMC Bioinformatics; 2018 Aug; 19(1):307. PubMed ID: 30157759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies.
    Boisvert S; Laviolette F; Corbeil J
    J Comput Biol; 2010 Nov; 17(11):1519-33. PubMed ID: 20958248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. STR-realigner: a realignment method for short tandem repeat regions.
    Kojima K; Kawai Y; Misawa K; Mimori T; Nagasaki M
    BMC Genomics; 2016 Dec; 17(1):991. PubMed ID: 27912743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. S-conLSH: alignment-free gapped mapping of noisy long reads.
    Chakraborty A; Morgenstern B; Bandyopadhyay S
    BMC Bioinformatics; 2021 Feb; 22(1):64. PubMed ID: 33573603
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pblat: a multithread blat algorithm speeding up aligning sequences to genomes.
    Wang M; Kong L
    BMC Bioinformatics; 2019 Jan; 20(1):28. PubMed ID: 30646844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving PacBio long read accuracy by short read alignment.
    Au KF; Underwood JG; Lee L; Wong WH
    PLoS One; 2012; 7(10):e46679. PubMed ID: 23056399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast inexact mapping using advanced tree exploration on backward search methods.
    Salavert J; Tomás A; Tárraga J; Medina I; Dopazo J; Blanquer I
    BMC Bioinformatics; 2015 Jan; 16():18. PubMed ID: 25626517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alignment of Next-Generation Sequencing Reads.
    Reinert K; Langmead B; Weese D; Evers DJ
    Annu Rev Genomics Hum Genet; 2015; 16():133-51. PubMed ID: 25939052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BFAST: an alignment tool for large scale genome resequencing.
    Homer N; Merriman B; Nelson SF
    PLoS One; 2009 Nov; 4(11):e7767. PubMed ID: 19907642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps.
    Dilthey AT; Jain C; Koren S; Phillippy AM
    Nat Commun; 2019 Jul; 10(1):3066. PubMed ID: 31296857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TruSPAdes: barcode assembly of TruSeq synthetic long reads.
    Bankevich A; Pevzner PA
    Nat Methods; 2016 Mar; 13(3):248-50. PubMed ID: 26828418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance difference of graph-based and alignment-based hybrid error correction methods for error-prone long reads.
    Wang A; Au KF
    Genome Biol; 2020 Jan; 21(1):14. PubMed ID: 31952552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ARAMIS: From systematic errors of NGS long reads to accurate assemblies.
    Sacristán-Horcajada E; González-de la Fuente S; Peiró-Pastor R; Carrasco-Ramiro F; Amils R; Requena JM; Berenguer J; Aguado B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34013348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast and memory efficient approach for mapping NGS reads to a reference genome.
    Kumar S; Agarwal S; Ranvijay
    J Bioinform Comput Biol; 2019 Apr; 17(2):1950008. PubMed ID: 31057068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EDAR: an efficient error detection and removal algorithm for next generation sequencing data.
    Zhao X; Palmer LE; Bolanos R; Mircean C; Fasulo D; Wittenberg GM
    J Comput Biol; 2010 Nov; 17(11):1549-60. PubMed ID: 20973743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.