These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28586459)

  • 1. FASTmiR: an RNA-based sensor for in vitro quantification and live-cell localization of small RNAs.
    Huang K; Doyle F; Wurz ZE; Tenenbaum SA; Hammond RK; Caplan JL; Meyers BC
    Nucleic Acids Res; 2017 Aug; 45(14):e130. PubMed ID: 28586459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing Fluorogenic Riboswitches for Imaging Metabolite Concentration Dynamics in Bacterial Cells.
    Litke JL; You M; Jaffrey SR
    Methods Enzymol; 2016; 572():315-33. PubMed ID: 27241761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors.
    Kellenberger CA; Hallberg ZF; Hammond MC
    Methods Mol Biol; 2015; 1316():87-103. PubMed ID: 25967055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis small RNAs and their targets during cyst nematode parasitism.
    Hewezi T; Howe P; Maier TR; Baum TJ
    Mol Plant Microbe Interact; 2008 Dec; 21(12):1622-34. PubMed ID: 18986258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Baby Spinach and Broccoli for imaging of structured cellular RNAs.
    Okuda M; Fourmy D; Yoshizawa S
    Nucleic Acids Res; 2017 Feb; 45(3):1404-1415. PubMed ID: 28180326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of plant microRNAs and short-interfering RNAs by deep parallel sequencing.
    Chellappan P; Jin H
    Methods Mol Biol; 2009; 495():121-32. PubMed ID: 19085152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of human immunodeficiency virus RNAs in living cells using Spinach RNA aptamers.
    Burch BD; Garrido C; Margolis DM
    Virus Res; 2017 Jan; 228():141-146. PubMed ID: 27914932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a Specific RNA-Protein Interaction To Quench the Fluorescent RNA Spinach.
    Roszyk L; Kollenda S; Hennig S
    ACS Chem Biol; 2017 Dec; 12(12):2958-2964. PubMed ID: 29058870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.
    Hu H; Rashotte AM; Singh NK; Weaver DB; Goertzen LR; Singh SR; Locy RD
    PLoS One; 2015; 10(6):e0127468. PubMed ID: 26070200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinach-based RNA mimicking GFP in plant cells.
    Yu Z; Wang Y; Mei F; Yan H; Jin Z; Zhang P; Zhang X; Tör M; Jackson S; Shi N; Hong Y
    Funct Integr Genomics; 2022 Jun; 22(3):423-428. PubMed ID: 35267109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed miRNA northern blots via hybridization chain reaction.
    Schwarzkopf M; Pierce NA
    Nucleic Acids Res; 2016 Sep; 44(15):e129. PubMed ID: 27270083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore.
    Huang H; Suslov NB; Li NS; Shelke SA; Evans ME; Koldobskaya Y; Rice PA; Piccirilli JA
    Nat Chem Biol; 2014 Aug; 10(8):686-91. PubMed ID: 24952597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Use of the real-time RT-PCR method for investigation of small stable RNA expression level in human epidermoid carcinoma cells A431].
    Nikitina TV; Nazarova NIu; Tishchenko LI; Tuohimaa P; Sedova VM
    Tsitologiia; 2003; 45(4):392-402. PubMed ID: 14520871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel real-time polymerase chain reaction method for high throughput quantification of small regulatory RNAs.
    Yang H; Schmuke JJ; Flagg LM; Roberts JK; Allen EM; Ivashuta S; Gilbertson LA; Armstrong TA; Christian AT
    Plant Biotechnol J; 2009 Sep; 7(7):621-30. PubMed ID: 19619184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational prediction and experimental verification of miRNAs in Panicum miliaceum L.
    Wu Y; Du J; Wang X; Fang X; Shan W; Liang Z
    Sci China Life Sci; 2012 Sep; 55(9):807-17. PubMed ID: 23015130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global analysis of non-coding small RNAs in Arabidopsis in response to jasmonate treatment by deep sequencing technology.
    Zhang B; Xie D; Jin Z
    J Integr Plant Biol; 2012 Feb; 54(2):73-86. PubMed ID: 22221297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling and Characterization of Small RNAs in the Liverwort, Marchantia polymorpha, Belonging to the First Diverged Land Plants.
    Tsuzuki M; Nishihama R; Ishizaki K; Kurihara Y; Matsui M; Bowman JL; Kohchi T; Hamada T; Watanabe Y
    Plant Cell Physiol; 2016 Feb; 57(2):359-72. PubMed ID: 26589267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conformation-induced fluorescence method for microRNA detection.
    Aw SS; Tang MX; Teo YN; Cohen SM
    Nucleic Acids Res; 2016 Jun; 44(10):e92. PubMed ID: 26951376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA signal amplifier circuit with integrated fluorescence output.
    Akter F; Yokobayashi Y
    ACS Synth Biol; 2015 May; 4(5):655-8. PubMed ID: 25354355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.