These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 28586747)

  • 1. Estimating the biomass of unevenly distributed aquatic vegetation in a lake using the normalized water-adjusted vegetation index and scale transformation method.
    Gao Y; Gao J; Wang J; Wang S; Li Q; Zhai S; Zhou Y
    Sci Total Environ; 2017 Dec; 601-602():998-1007. PubMed ID: 28586747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel strategy for estimating biomass of submerged aquatic vegetation in lake integrating UAV and Sentinel data.
    Lu L; Luo J; Xin Y; Xu Y; Sun Z; Duan H; Xiao Q; Qiu Y; Huang L; Zhao J
    Sci Total Environ; 2024 Feb; 912():169404. PubMed ID: 38104807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting Aquatic Vegetation Changes in Taihu Lake, China Using Multi-temporal Satellite Imagery.
    Ma R; Duan H; Gu X; Zhang S
    Sensors (Basel); 2008 Jun; 8(6):3988-4005. PubMed ID: 27879919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques.
    Gao Y; Gao J; Yin H; Liu C; Xia T; Wang J; Huang Q
    J Environ Manage; 2015 Mar; 151():33-43. PubMed ID: 25528271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote sensing of aquatic vegetation distribution in Taihu Lake using an improved classification tree with modified thresholds.
    Zhao D; Jiang H; Yang T; Cai Y; Xu D; An S
    J Environ Manage; 2012 Mar; 95(1):98-107. PubMed ID: 22115514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Pheno-climatic profiles of vegetation based on multitemporal analysis of satellite data].
    Taddei R
    Parassitologia; 2004 Jun; 46(1-2):63-6. PubMed ID: 15305688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
    Maynard JJ; Karl JW
    PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of three methods to collect submerged aquatic vegetation in a shallow lake.
    Rodusky AJ; Sharfstein B; East TL; Maki RP
    Environ Monit Assess; 2005 Nov; 110(1-3):87-97. PubMed ID: 16308780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Responses of aquatic vegetation coverage to interannual variations of water level in different hydrologically connected sub-lakes of Poyang Lake, China].
    Wang H; Chen WB; He L; Li HF
    Ying Yong Sheng Tai Xue Bao; 2022 Jan; 33(1):191-200. PubMed ID: 35224941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale mapping and predictive modeling of submerged aquatic vegetation in a shallow eutrophic lake.
    Havens KE; Harwell MC; Brady MA; Sharfstein B; East TL; Rodusky AJ; Anson D; Maki RP
    ScientificWorldJournal; 2002 Apr; 2():949-65. PubMed ID: 12805949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-Temporal Variability of Aquatic Vegetation in Taihu Lake over the Past 30 Years.
    Zhao D; Lv M; Jiang H; Cai Y; Xu D; An S
    PLoS One; 2013; 8(6):e66365. PubMed ID: 23823189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote and field level quantification of vegetation covariates for malaria mapping in three rice agro-village complexes in Central Kenya.
    Jacob BG; Muturi EJ; Mwangangi JM; Funes J; Caamano EX; Muriu S; Shililu J; Githure J; Novak RJ
    Int J Health Geogr; 2007 Jun; 6():21. PubMed ID: 17550620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing.
    Visser F; Buis K; Verschoren V; Meire P
    Sensors (Basel); 2015 Sep; 15(10):25287-312. PubMed ID: 26437410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China.
    Shao Z; Zhang L
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27338378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping global lake aquatic vegetation dynamics using 10-m resolution satellite observations.
    Hou X; Liu J; Huang H; Zhang Y; Liu C; Gong P
    Sci Bull (Beijing); 2024 Oct; 69(19):3115-3126. PubMed ID: 38906736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Spatio-temporal Variations in Aquatic Vegetation Cover and the Potential Influencing Factors in Lake Hongze Based on MODIS Images].
    Li N; Shi K; Zhang YL; Gong ZJ; Zha Y; Zhang YB
    Huan Jing Ke Xue; 2019 Oct; 40(10):4487-4496. PubMed ID: 31854816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle.
    Sturtevant CS; Oechel WC
    Glob Chang Biol; 2013 Sep; 19(9):2853-66. PubMed ID: 23649775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS.
    Wulder MA; White JC; Fournier RA; Luther JE; Magnussen S
    Sensors (Basel); 2008 Jan; 8(1):529-560. PubMed ID: 27879721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of lake sediments as a pathway for microcystin dynamics in shallow eutrophic lakes.
    Song H; Coggins LX; Reichwaldt ES; Ghadouani A
    Toxins (Basel); 2015 Mar; 7(3):900-18. PubMed ID: 25793723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.