BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28586766)

  • 1. SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores.
    Chen Q; Wang Y; Deng T; Liu Z
    Nanotechnology; 2017 Jul; 28(30):305301. PubMed ID: 28586766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of nanopores in a silicon membrane: self-limiting formation of sub-10 nm circular openings.
    Zhang M; Schmidt T; Sangghaleh F; Roxhed N; Sychugov I; Linnros J
    Nanotechnology; 2014 Sep; 25(35):355302. PubMed ID: 25116147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shrinking solid-state nanopores using electron-beam-induced deposition.
    Kox R; Chen C; Maes G; Lagae L; Borghs G
    Nanotechnology; 2009 Mar; 20(11):115302. PubMed ID: 19420436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SEM-induced shrinking of solid-state nanopores for single molecule detection.
    Prabhu AS; Freedman KJ; Robertson JW; Nikolov Z; Kasianowicz JJ; Kim MJ
    Nanotechnology; 2011 Oct; 22(42):425302. PubMed ID: 21937789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resizing metal-coated nanopores using a scanning electron microscope.
    Chansin GA; Hong J; Dusting J; deMello AJ; Albrecht T; Edel JB
    Small; 2011 Oct; 7(19):2736-41. PubMed ID: 21953785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable Shrinking Fabrication of Solid-State Nanopores.
    Lei X; Zhang J; Hong H; Yuan Z; Liu Z
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled size reduction and its underlying mechanism to form solid-state nanopores via electron beam induced carbon deposition.
    Zeng S; Wen C; Li S; Chen X; Chen S; Zhang SL; Zhang Z
    Nanotechnology; 2019 Nov; 30(45):455303. PubMed ID: 31394513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of nanopores and nanoslits with feature sizes down to 5 nm by wet etching method.
    Chen Q; Wang Y; Deng T; Liu Z
    Nanotechnology; 2018 Feb; 29(8):085301. PubMed ID: 29300172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology.
    Wang Y; Deng T; Chen Q; Liang F; Liu Z
    Nanotechnology; 2016 Jun; 27(25):254005. PubMed ID: 27181294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-functionalized silicon nitride nanopores for sequence-specific recognition of DNA biosensor.
    Tan S; Wang L; Yu J; Hou C; Jiang R; Li Y; Liu Q
    Nanoscale Res Lett; 2015; 10():205. PubMed ID: 25977675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable shrinking of inverted-pyramid silicon nanopore arrays by dry-oxygen oxidation.
    Deng T; Chen J; Li M; Wang Y; Zhao C; Zhang Z; Liu Z
    Nanotechnology; 2013 Dec; 24(50):505303. PubMed ID: 24285505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanopore arrays in a silicon membrane for parallel single-molecule detection: DNA translocation.
    Zhang M; Schmidt T; Jemt A; Sahlén P; Sychugov I; Lundeberg J; Linnros J
    Nanotechnology; 2015 Aug; 26(31):314002. PubMed ID: 26180050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shrinking of Solid-state Nanopores by Direct Thermal Heating.
    Asghar W; Ilyas A; Billo JA; Iqbal SM
    Nanoscale Res Lett; 2011 May; 6(1):372. PubMed ID: 21711885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lifetime and Stability of Silicon Nitride Nanopores and Nanopore Arrays for Ionic Measurements.
    Chou YC; Masih Das P; Monos DS; Drndić M
    ACS Nano; 2020 Jun; 14(6):6715-6728. PubMed ID: 32275381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable shrinking and shaping of glass nanocapillaries under electron irradiation.
    Steinbock LJ; Steinbock JF; Radenovic A
    Nano Lett; 2013 Apr; 13(4):1717-23. PubMed ID: 23506620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and Applications of Solid-State Nanopores.
    Chen Q; Liu Z
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage.
    Puster M; Rodríguez-Manzo JA; Balan A; Drndić M
    ACS Nano; 2013 Dec; 7(12):11283-9. PubMed ID: 24224888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.
    Schmidt T; Zhang M; Sychugov I; Roxhed N; Linnros J
    Nanotechnology; 2015 Aug; 26(31):314001. PubMed ID: 26180043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophilic and size-controlled graphene nanopores for protein detection.
    Goyal G; Lee YB; Darvish A; Ahn CW; Kim MJ
    Nanotechnology; 2016 Dec; 27(49):495301. PubMed ID: 27827346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electrons on the shape of nanopores prepared by focused electron beam induced etching.
    Liebes Y; Hadad B; Ashkenasy N
    Nanotechnology; 2011 Jul; 22(28):285303. PubMed ID: 21636881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.