These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28586917)

  • 1. Toward the Virtual Benchmarking of Pneumatic Ventricular Assist Devices: Application of a Novel Fluid-Structure Interaction-Based Strategy to the Penn State 12 cc Device.
    Caimi A; Sturla F; Good B; Vidotto M; De Ponti R; Piatti F; Manning KB; Redaelli A
    J Biomech Eng; 2017 Aug; 139(8):0810081-08100810. PubMed ID: 28586917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 12 cc Penn State pulsatile pediatric ventricular assist device: fluid dynamics associated with valve selection.
    Cooper BT; Roszelle BN; Long TC; Deutsch S; Manning KB
    J Biomech Eng; 2008 Aug; 130(4):041019. PubMed ID: 18601461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of device position on the flow within the Penn State 12 cc pediatric ventricular assist device.
    Schönberger M; Deutsch S; Manning KB
    ASAIO J; 2012; 58(5):481-93. PubMed ID: 22929894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow behavior within the 12-cc Penn State pulsatile pediatric ventricular assist device: an experimental study of the initial design.
    Manning KB; Wivholm BD; Yang N; Fontaine AA; Deutsch S
    Artif Organs; 2008 Jun; 32(6):442-52. PubMed ID: 18422800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of operational protocol on the fluid dynamics in the 12 cc Penn state pulsatile pediatric ventricular assist device: the effect of end-diastolic delay.
    Cooper BT; Roszelle BN; Long TC; Deutsch S; Manning KB
    Artif Organs; 2010 Apr; 34(4):E122-33. PubMed ID: 20420603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 12 cc Penn State pulsatile pediatric ventricular assist device: flow field observations at a reduced beat rate with application to weaning.
    Roszelle BN; Cooper BT; Long TC; Deutsch S; Manning KB
    ASAIO J; 2008; 54(3):325-31. PubMed ID: 18496284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A parametric study of valve orientation on the flow patterns of the Penn State pulsatile pediatric ventricular assist device.
    Roszelle BN; Deutsch S; Manning KB
    ASAIO J; 2010; 56(4):356-63. PubMed ID: 20559131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mean flow velocity patterns within a ventricular assist device.
    Baldwin JT; Tarbell JM; Deutsch S; Geselowitz DB
    ASAIO Trans; 1989; 35(3):429-33. PubMed ID: 2597496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical model of flow in a sac-type ventricular assist device.
    Avrahami I; Rosenfeld M; Raz S; Einav S
    Artif Organs; 2006 Jul; 30(7):529-38. PubMed ID: 16836734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow simulation of a diaphragm-type ventricular assist device with structural interactions.
    Moosavi MH; Fatouraee N
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1027-30. PubMed ID: 18002135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The progressive wave pump: numerical multiphysics investigation of a novel pump concept with potential to ventricular assist device application.
    Perschall M; Drevet JB; Schenkel T; Oertel H
    Artif Organs; 2012 Sep; 36(9):E179-90. PubMed ID: 22835085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel interface for hybrid mock circulations to evaluate ventricular assist devices.
    Ochsner G; Amacher R; Amstutz A; Plass A; Schmid Daners M; Tevaearai H; Vandenberghe S; Wilhelm MJ; Guzzella L
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):507-16. PubMed ID: 23204266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Off-design considerations of the 50cc Penn State Ventricular Assist Device.
    Oley LA; Manning KB; Fontaine AA; Deutsch S
    Artif Organs; 2005 May; 29(5):378-86. PubMed ID: 15854213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concepts in the application of pneumatic ventricular assist devices for ischemic myocardial injury.
    Gutfinger DE; Ott RA; Eugene J; Gazzaniga AB
    ASAIO J; 1995; 41(2):162-8. PubMed ID: 7640420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulations of blood flow in artificial and natural hearts with fluid-structure interaction.
    Doyle MG; Vergniaud JB; Tavoularis S; Bourgault Y
    Artif Organs; 2008 Nov; 32(11):870-9. PubMed ID: 18959680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ventricular assist devices as a bridge-to-transplant improve early post-transplant outcomes in children.
    Davies RR; Haldeman S; McCulloch MA; Pizarro C
    J Heart Lung Transplant; 2014 Jul; 33(7):704-12. PubMed ID: 24709269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method of backflow reduction in ventricular assist devices.
    Untariou A; Allaire PE
    Biomed Sci Instrum; 2012; 48():439-46. PubMed ID: 22846317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro evaluation of an external compression device for fontan mechanical assistance.
    Valdovinos J; Shkolyar E; Carman GP; Levi DS
    Artif Organs; 2014 Mar; 38(3):199-207. PubMed ID: 24147904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental investigation of unsteady flow behaviour within a sac-type ventricular assist device (VAD).
    Jin W; Clark C
    J Biomech; 1993 Jun; 26(6):697-707. PubMed ID: 8514814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal pressure regulation of the pneumatic ventricular assist device with bellows-type driver.
    Lee JJ; Kim BS; Choi J; Choi H; Ahn CB; Nam KW; Jeong GS; Lim CH; Son HS; Sun K
    Artif Organs; 2009 Aug; 33(8):627-33. PubMed ID: 19624587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.