These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28587111)

  • 1. Development of a Flexible Artificial Lateral Line Canal System for Hydrodynamic Pressure Detection.
    Jiang Y; Ma Z; Fu J; Zhang D
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28587111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.
    Asadnia M; Kottapalli AG; Miao J; Warkiani ME; Triantafyllou MS
    J R Soc Interface; 2015 Oct; 12(111):20150322. PubMed ID: 26423435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constriction canal assisted artificial lateral line system for enhanced hydrodynamic pressure sensing.
    Ma Z; Jiang Y; Wu P; Xu Y; Hu X; Gong Z; Zhang D
    Bioinspir Biomim; 2019 Sep; 14(6):066004. PubMed ID: 31434068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Highly Sensitive Deep-Sea Hydrodynamic Pressure Sensor Inspired by Fish Lateral Line.
    Hu X; Ma Z; Gong Z; Zhao F; Guo S; Zhang D; Jiang Y
    Biomimetics (Basel); 2024 Mar; 9(3):. PubMed ID: 38534875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pressure difference sensor inspired by fish canal lateral line.
    Sharif MA; Tan X
    Bioinspir Biomim; 2019 Jul; 14(5):055003. PubMed ID: 31282390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-inspired Flexible Lateral Line Sensor Based on P(VDF-TrFE)/BTO Nanofiber Mat for Hydrodynamic Perception.
    Hu X; Jiang Y; Ma Z; Xu Y; Zhang D
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on Flow Field Perception Based on Artificial Lateral Line Sensor System.
    Liu G; Wang M; Wang A; Wang S; Yang T; Malekian R; Li Z
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29534499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow field perception based on the fish lateral line system.
    Jiang Y; Ma Z; Zhang D
    Bioinspir Biomim; 2019 May; 14(4):041001. PubMed ID: 30995633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Sensitive Flexible Pressure Sensor Based on Silver Nanowires-Embedded Polydimethylsiloxane Electrode with Microarray Structure.
    Shuai X; Zhu P; Zeng W; Hu Y; Liang X; Zhang Y; Sun R; Wong CP
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26314-26324. PubMed ID: 28753269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Touch at a distance sensing: lateral-line inspired MEMS flow sensors.
    Prakash Kottapalli AG; Asadnia M; Miao J; Triantafyllou M
    Bioinspir Biomim; 2014 Nov; 9(4):046011. PubMed ID: 25378298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial lateral line with biomimetic neuromasts to emulate fish sensing.
    Yang Y; Nguyen N; Chen N; Lockwood M; Tucker C; Hu H; Bleckmann H; Liu C; Jones DL
    Bioinspir Biomim; 2010 Mar; 5(1):16001. PubMed ID: 20061601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.
    Abels C; Qualtieri A; De Vittorio M; Megill WM; Rizzi F
    Bioinspir Biomim; 2016 Jun; 11(3):035006. PubMed ID: 27257144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.
    DeVries L; Lagor FD; Lei H; Tan X; Paley DA
    Bioinspir Biomim; 2015 Mar; 10(2):025002. PubMed ID: 25807584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Experimental Evaluation of a Dual-Cantilever Piezoelectric Film Sensor with a Broadband Response and High Sensitivity.
    Xin W; He Z; Zhao C
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyvinylidene fluoride film sensors in collocated feedback structural control: application for suppressing impact-induced disturbances.
    Ma CC; Chuang KC; Pan SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2539-54. PubMed ID: 23443690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology.
    van Netten SM
    Biol Cybern; 2006 Jan; 94(1):67-85. PubMed ID: 16315048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Form-function relationship in artificial lateral lines.
    Kaldenbach F; Klein A; Bleckmann H
    Bioinspir Biomim; 2019 Jan; 14(2):026001. PubMed ID: 30608055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function of lateral line canal morphology.
    Klein A; Bleckmann H
    Integr Zool; 2015 Jan; 10(1):111-21. PubMed ID: 24920149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray.
    Asadnia M; Kottapalli AG; Haghighi R; Cloitre A; Alvarado PV; Miao J; Triantafyllou M
    Bioinspir Biomim; 2015 May; 10(3):036008. PubMed ID: 25984934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A BTO/PVDF/PDMS Piezoelectric Tangential and Normal Force Sensor Inspired by a Wind Chime.
    Zhang C; Zhang X; Zhang Q; Sang S; Ji J; Hao R; Liu Y
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.