These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28587154)

  • 21. African swine fever virus-cell interactions: from virus entry to cell survival.
    Alonso C; Galindo I; Cuesta-Geijo MA; Cabezas M; Hernaez B; Muñoz-Moreno R
    Virus Res; 2013 Apr; 173(1):42-57. PubMed ID: 23262167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. African swine fever virus ORF P1192R codes for a functional type II DNA topoisomerase.
    Coelho J; Martins C; Ferreira F; Leitão A
    Virology; 2015 Jan; 474():82-93. PubMed ID: 25463606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport of African swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin.
    Jouvenet N; Monaghan P; Way M; Wileman T
    J Virol; 2004 Aug; 78(15):7990-8001. PubMed ID: 15254171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into the function of ESCRT complex and LBPA in ASFV infection.
    Barrado-Gil L; García-Dorival I; Galindo I; Alonso C; Cuesta-Geijo MÁ
    Front Cell Infect Microbiol; 2023; 13():1163569. PubMed ID: 38125905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein cell receptors mediate the saturable interaction of African swine fever virus attachment protein p12 with the surface of permissive cells.
    Galindo I; Viñuela E; Carrascosa AL
    Virus Res; 1997 Jun; 49(2):193-204. PubMed ID: 9213394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bis-benzylisoquinoline alkaloids inhibit African swine fever virus internalization and replication by impairing late endosomal/lysosomal function.
    Zhu J; Chen H; Gao F; Jian W; Huang G; Sunkang Y; Chen X; Liao M; Zhang K; Qi W; Huang L
    J Virol; 2024 Aug; 98(8):e0032724. PubMed ID: 39082785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenotype-based identification of host genes required for replication of African swine fever virus.
    Chang AC; Zsak L; Feng Y; Mosseri R; Lu Q; Kowalski P; Zsak A; Burrage TG; Neilan JG; Kutish GF; Lu Z; Laegreid W; Rock DL; Cohen SN
    J Virol; 2006 Sep; 80(17):8705-17. PubMed ID: 16912318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus.
    O'Donnell V; Holinka LG; Gladue DP; Sanford B; Krug PW; Lu X; Arzt J; Reese B; Carrillo C; Risatti GR; Borca MV
    J Virol; 2015 Jun; 89(11):6048-56. PubMed ID: 25810553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replication of African swine fever virus DNA in infected cells.
    Rojo G; García-Beato R; Viñuela E; Salas ML; Salas J
    Virology; 1999 May; 257(2):524-36. PubMed ID: 10329562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Host cell targets for African swine fever virus.
    Muñoz-Moreno R; Galindo I; Cuesta-Geijo MÁ; Barrado-Gil L; Alonso C
    Virus Res; 2015 Nov; 209():118-27. PubMed ID: 26057710
    [TBL] [Abstract][Full Text] [Related]  

  • 31. No evidence of African swine fever virus replication in hard ticks.
    de Carvalho Ferreira HC; Tudela Zúquete S; Wijnveld M; Weesendorp E; Jongejan F; Stegeman A; Loeffen WL
    Ticks Tick Borne Dis; 2014 Sep; 5(5):582-9. PubMed ID: 24980962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection.
    Galindo I; Hernáez B; Muñoz-Moreno R; Cuesta-Geijo MA; Dalmau-Mena I; Alonso C
    Cell Death Dis; 2012 Jul; 3(7):e341. PubMed ID: 22764100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. African swine fever virus dUTPase is a highly specific enzyme required for efficient replication in swine macrophages.
    Oliveros M; García-Escudero R; Alejo A; Viñuela E; Salas ML; Salas J
    J Virol; 1999 Nov; 73(11):8934-43. PubMed ID: 10515998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry.
    Hernaez B; Alonso C
    J Virol; 2010 Feb; 84(4):2100-9. PubMed ID: 19939916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Host DNA damage response facilitates African swine fever virus infection.
    Simões M; Martins C; Ferreira F
    Vet Microbiol; 2013 Jul; 165(1-2):140-7. PubMed ID: 23398667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Association of African swine fever virus with the cytoskeleton.
    Carvalho ZG; De Matos AP; Rodrigues-Pousada C
    Virus Res; 1988 Sep; 11(2):175-92. PubMed ID: 3201825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Ep152R ORF of African swine fever virus strain Georgia encodes for an essential gene that interacts with host protein BAG6.
    Borca MV; O'Donnell V; Holinka LG; Rai DK; Sanford B; Alfano M; Carlson J; Azzinaro PA; Alonso C; Gladue DP
    Virus Res; 2016 Sep; 223():181-9. PubMed ID: 27497620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A BIR motif containing gene of African swine fever virus, 4CL, is nonessential for growth in vitro and viral virulence.
    Neilan JG; Lu Z; Kutish GF; Zsak L; Burrage TG; Borca MV; Carrillo C; Rock DL
    Virology; 1997 Apr; 230(2):252-64. PubMed ID: 9143281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of chloroquine on African swine fever virus infection.
    Geraldes A; Valdeira ML
    J Gen Virol; 1985 May; 66 ( Pt 5)():1145-8. PubMed ID: 3998709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. African swine fever virus controls the host transcription and cellular machinery of protein synthesis.
    Sánchez EG; Quintas A; Nogal M; Castelló A; Revilla Y
    Virus Res; 2013 Apr; 173(1):58-75. PubMed ID: 23154157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.