These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 28587178)

  • 1. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion.
    Filippeschi A; Schmitz N; Miezal M; Bleser G; Ruffaldi E; Stricker D
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Position Tracking During Human Walking Using an Integrated Wearable Sensing System.
    Zizzo G; Ren L
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multi-Modal Under-Sensorized Wearable System for Optimal Kinematic and Muscular Tracking of Human Upper Limb Motion.
    Bonifati P; Baracca M; Menolotto M; Averta G; Bianchi M
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Limb Motion Tracking with a Single IMU Sensor for Physical Therapy Exercises.
    Wei W; Kurita K; Kuang J; Gao A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7152-7157. PubMed ID: 34892750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On Inertial Body Tracking in the Presence of Model Calibration Errors.
    Miezal M; Taetz B; Bleser G
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a model-based inverse kinematics approach based on wearable inertial sensors.
    Tagliapietra L; Modenese L; Ceseracciu E; Mazzà C; Reggiani M
    Comput Methods Biomech Biomed Engin; 2018 Dec; 21(16):834-844. PubMed ID: 30466324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upper Limb Position Tracking with a Single Inertial Sensor Using Dead Reckoning Method with Drift Correction Techniques.
    Bai L; Pepper MG; Wang Z; Mulvenna MD; Bond RR; Finlay D; Zheng H
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial-Robotic Motion Tracking in End-Effector-Based Rehabilitation Robots.
    Passon A; Schauer T; Seel T
    Front Robot AI; 2020; 7():554639. PubMed ID: 33501318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IMU Motion Capture Method with Adaptive Tremor Attenuation in Teleoperation Robot System.
    Zhu H; Li X; Wang L; Chen Z; Shi Y; Zheng S; Li M
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angle measurement stability and cycle counting accuracy of hours-long duration IMU based arm motion tracking with application to normal shoulder ADLs.
    Kirking B
    Gait Posture; 2023 Feb; 100():27-32. PubMed ID: 36469964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating Lower Limb Kinematics Using a Lie Group Constrained Extended Kalman Filter with a Reduced Wearable IMU Count and Distance Measurements.
    Sy LWF; Lovell NH; Redmond SJ
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Multi-IMU Tight Coupling Pedestrian Localization Exploiting Biomechanical Motion Constraints.
    Bousdar Ahmed D; Munoz Diaz E; García Domínguez JJ
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of Upper-Limb Inertial Measurement Unit Data to Joint Angles: A Systematic Review.
    Fang Z; Woodford S; Senanayake D; Ackland D
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Personalized Markerless Upper-Body Tracking with a Depth Camera and Wrist-Worn Inertial Measurement Units.
    Jatesiktat P; Anopas D; Ang WT
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-6. PubMed ID: 30440294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual-inertial hand motion tracking with robustness against occlusion, interference, and contact.
    Lee Y; Do W; Yoon H; Heo J; Lee W; Lee D
    Sci Robot; 2021 Sep; 6(58):eabe1315. PubMed ID: 34586835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Upper Limb Position Estimation Based on Angular Displacement Sensors for Wearable Devices.
    Contreras-González AF; Ferre M; Sánchez-Urán MÁ; Sáez-Sáez FJ; Blaya Haro F
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33198097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
    Borbély BJ; Szolgay P
    Biomed Eng Online; 2017 Jan; 16(1):21. PubMed ID: 28095857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Ground Contact Time with Inertial Sensors from the Upper Arm and the Upper Back.
    González L; López AM; Álvarez D; Álvarez JC
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of inertial measurement unit placement in assessing upper limb motion.
    Höglund G; Grip H; Öhberg F
    Med Eng Phys; 2021 Jun; 92():1-9. PubMed ID: 34167702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.