BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 28587252)

  • 1. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.
    Grosu V; Grosu S; Vanderborght B; Lefeber D; Rodriguez-Guerrero C
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer Optical Fiber-Based Integrated Instrumentation in a Robot-Assisted Rehabilitation Smart Environment: A Proof of Concept.
    Leal-Junior A; Avellar L; Jaimes J; Díaz C; Dos Santos W; Siqueira AAG; Pontes MJ; Marques C; Frizera A
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32512903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging.
    Kim SJ; Kim Y; Lee H; Ghasemlou P; Kim J
    Med Biol Eng Comput; 2018 Feb; 56(2):261-272. PubMed ID: 28712012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.
    Mancisidor A; Zubizarreta A; Cabanes I; Portillo E; Jung JH
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29510596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instrumented Compliant Wrist with Proximity and Contact Sensing for Close Robot Interaction Control.
    Laferrière P; Payeur P
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28613255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Soft Sensor-Based Measurement of Interactive Force and Assistive Torque for a Robotic Hip Exoskeleton.
    Wang S; Zhang B; Yu Z; Yan Y
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.
    Choi H; Seo K; Hyung S; Shim Y; Lim SC
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary Assessment of a Compliant Gait Exoskeleton.
    Cestari M; Sanz-Merodio D; Garcia E
    Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
    Jarrett C; McDaid AJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Validation of a Flexible Sensing Array for Placement within the Physical Human-Exoskeleton Interface.
    Turnbull RP; Evans E; Dehghani-Sanij AA
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy.
    Chen G; Chan CK; Guo Z; Yu H
    Crit Rev Biomed Eng; 2013; 41(4-5):343-63. PubMed ID: 24941413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assistive Control System for Upper Limb Rehabilitation Robot.
    Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A preliminary investigation into the design of pressure cushions and their potential applications for forearm robotic orthoses.
    Alavi N; Zampierin S; Komeili M; Cocuzza S; Debei S; Menon C
    Biomed Eng Online; 2017 May; 16(1):54. PubMed ID: 28482892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface.
    De Rossi SM; Vitiello N; Lenzi T; Ronsse R; Koopman B; Persichetti A; Vecchi F; Ijspeert AJ; van der Kooij H; Carrozza MC
    Sensors (Basel); 2011; 11(1):207-27. PubMed ID: 22346574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury.
    Sale P; Franceschini M; Waldner A; Hesse S
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):111-21. PubMed ID: 22543557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a series elastic actuator for a compliant parallel wrist rehabilitation robot.
    Sergi F; Lee MM; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650481. PubMed ID: 24187298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing Physical Human-Robot Interaction with Spring-and Elastomer-Based Series Elastic Actuators.
    Jarrett C; McDaid AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1697-1700. PubMed ID: 30440722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.