These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 28587252)

  • 21. Design of a novel telerehabilitation system with a force-sensing mechanism.
    Zhang S; Guo S; Gao B; Hirata H; Ishihara H
    Sensors (Basel); 2015 May; 15(5):11511-27. PubMed ID: 25996511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A brain-controlled lower-limb exoskeleton for human gait training.
    Liu D; Chen W; Pei Z; Wang J
    Rev Sci Instrum; 2017 Oct; 88(10):104302. PubMed ID: 29092520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Assistive Control Strategy for Rehabilitation Robots Using Velocity Field and Force Field.
    Asl HJ; Narikiyo T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():790-795. PubMed ID: 31374727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rehabilitative Soft Exoskeleton for Rodents.
    Florez JM; Shah M; Moraud EM; Wurth S; Baud L; Von Zitzewitz J; van den Brand R; Micera S; Courtine G; Paik J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):107-118. PubMed ID: 28113858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton.
    Wang W; He Y; Li F; Li J; Liu J; Wu X
    Technol Health Care; 2023; 31(1):103-115. PubMed ID: 35754239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Modular Design for Distributed Measurement of Human-Robot Interaction Forces in Wearable Devices.
    Ghonasgi K; Yousaf SN; Esmatloo P; Deshpande AD
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies.
    Proietti T; Crocher V; Roby-Brami A; Jarrasse N
    IEEE Rev Biomed Eng; 2016; 9():4-14. PubMed ID: 27071194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Customized Series Elastic Actuator for a Safe and Compliant Human-Robot Interaction: Design and Characterization.
    Bodo G; Tessari F; Buccelli S; De Guglielmo L; Capitta G; Laffranchi M; De Michieli L
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Novel User Control for Lower Extremity Rehabilitation Exoskeletons.
    Karunakaran KK; Abbruzzese K; Androwis G; Foulds RA
    Front Robot AI; 2020; 7():108. PubMed ID: 33501275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Wearable Co-Located Neural-Mechanical Signal Sensing Device for Simultaneous Bimodal Muscular Activity Detection.
    Wang T; Zhao Y; Wang Q
    IEEE Trans Biomed Eng; 2023 Dec; 70(12):3401-3412. PubMed ID: 37339048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results.
    Mazzoleni S; Battini E; Rustici A; Stampacchia G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():289-293. PubMed ID: 28813833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.
    Vicentini F; Pedrocchi N; Malosio M; Molinari Tosatti L
    Comput Methods Programs Biomed; 2014 Sep; 116(2):156-68. PubMed ID: 24750989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Survey of Teleceptive Sensing for Wearable Assistive Robotic Devices.
    Krausz NE; Hargrove LJ
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward Multimodal Human-Robot Interaction to Enhance Active Participation of Users in Gait Rehabilitation.
    Gui K; Liu H; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2054-2066. PubMed ID: 28504943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical Extraction and Feature Fusion for Multi-Mode Signals in a Measurement System for Patients in Rehabilitation Exoskeleton.
    Yang C; Wei Q; Wu X; Ma Z; Chen Q; Wang X; Wang H; Fan W
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30087290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.
    Veras EJ; De Laurentis KJ; Dubey R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4290-3. PubMed ID: 19163661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-Cost Force Sensors Embedded in Physical Human-Machine Interfaces: Concept, Exemplary Realization on Upper-Body Exoskeleton, and Validation.
    Hoffmann N; Ersoysal S; Prokop G; Hoefer M; Weidner R
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.