These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28587456)

  • 1. Effective Fragment Potential Method for H-Bonding: How To Obtain Parameters for Nonrigid Fragments.
    Dubinets N; Slipchenko LV
    J Phys Chem A; 2017 Jul; 121(28):5301-5312. PubMed ID: 28587456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Prediction of Noncovalent Interaction Energies with the Effective Fragment Potential Method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set.
    Flick JC; Kosenkov D; Hohenstein EG; Sherrill CD; Slipchenko LV
    J Chem Theory Comput; 2012 Aug; 8(8):2835-43. PubMed ID: 26592124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking the Effective Fragment Potential Dispersion Correction on the S22 Test Set.
    Kim S; Kaliszewski CM; Guidez EB; Gordon MS
    J Phys Chem A; 2018 Apr; 122(16):4076-4084. PubMed ID: 29601202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective Fragment Potentials for Flexible Molecules: Transferability of Parameters and Amino Acid Database.
    Kim Y; Bui Y; Tazhigulov RN; Bravaya KB; Slipchenko LV
    J Chem Theory Comput; 2020 Dec; 16(12):7735-7747. PubMed ID: 33236635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate determination of the binding energy of the formic acid dimer: the importance of geometry relaxation.
    Kalescky R; Kraka E; Cremer D
    J Chem Phys; 2014 Feb; 140(8):084315. PubMed ID: 24588177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level.
    Dabkowska I; Jurecka P; Hobza P
    J Chem Phys; 2005 May; 122(20):204322. PubMed ID: 15945739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling pi-pi interactions with the effective fragment potential method: the benzene dimer and substituents.
    Smith T; Slipchenko LV; Gordon MS
    J Phys Chem A; 2008 Jun; 112(23):5286-94. PubMed ID: 18476681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Heterogeneity in Small π-Type Dimers: Homogeneous and Mixed Dimers of Diacetylene and Cyanogen.
    Copeland KL; Tschumper GS
    J Chem Theory Comput; 2012 Nov; 8(11):4279-84. PubMed ID: 26605591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NENCI-2021. I. A large benchmark database of non-equilibrium non-covalent interactions emphasizing close intermolecular contacts.
    Sparrow ZM; Ernst BG; Joo PT; Lao KU; DiStasio RA
    J Chem Phys; 2021 Nov; 155(18):184303. PubMed ID: 34773949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermolecular interactions in complex liquids: effective fragment potential investigation of water-tert-butanol mixtures.
    Hands MD; Slipchenko LV
    J Phys Chem B; 2012 Mar; 116(9):2775-86. PubMed ID: 22324786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies.
    Hesselmann A; Jansen G; Schütz M
    J Chem Phys; 2005 Jan; 122(1):14103. PubMed ID: 15638638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multipole Moments in the Effective Fragment Potential Method.
    Bertoni C; Slipchenko LV; Misquitta AJ; Gordon MS
    J Phys Chem A; 2017 Mar; 121(9):2056-2067. PubMed ID: 28211686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in structure, energy, and spectrum between neutral, protonated, and deprotonated phenol dimers: comparison of various density functionals with ab initio theory.
    Kołaski M; Kumar A; Singh NJ; Kim KS
    Phys Chem Chem Phys; 2011 Jan; 13(3):991-1001. PubMed ID: 21063580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate description of intermolecular interactions involving ions using symmetry-adapted perturbation theory.
    Lao KU; Schäffer R; Jansen G; Herbert JM
    J Chem Theory Comput; 2015 Jun; 11(6):2473-86. PubMed ID: 26575547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer.
    Pitonák M; Riley KE; Neogrády P; Hobza P
    Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Monomer Electron Density Force Field (MEDFF): A Physically Inspired Model for Noncovalent Interactions.
    Vandenbrande S; Waroquier M; Speybroeck VV; Verstraelen T
    J Chem Theory Comput; 2017 Jan; 13(1):161-179. PubMed ID: 27935712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exchange-repulsion energy in QM/EFP.
    Viquez Rojas CI; Fine J; Slipchenko LV
    J Chem Phys; 2018 Sep; 149(9):094103. PubMed ID: 30195305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CCSD(T)/CBS fragment-based calculations of lattice energy of molecular crystals.
    Červinka C; Fulem M; Růžička K
    J Chem Phys; 2016 Feb; 144(6):064505. PubMed ID: 26874495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.