BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28587734)

  • 1. Editorial-Sequences and topology.
    Sowdhamini R; Mizuguchi K
    Curr Opin Struct Biol; 2017 Jun; 44():vii-viii. PubMed ID: 28587734
    [No Abstract]   [Full Text] [Related]  

  • 2. CLUB-MARTINI: Selecting Favourable Interactions amongst Available Candidates, a Coarse-Grained Simulation Approach to Scoring Docking Decoys.
    Hou Q; Lensink MF; Heringa J; Feenstra KA
    PLoS One; 2016; 11(5):e0155251. PubMed ID: 27166787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-grained and atomic resolution biomolecular docking with the ATTRACT approach.
    Glashagen G; de Vries S; Uciechowska-Kaczmarzyk U; Samsonov SA; Murail S; Tuffery P; Zacharias M
    Proteins; 2020 Aug; 88(8):1018-1028. PubMed ID: 31785163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges and opportunities of automated protein-protein docking: HDOCK server vs human predictions in CAPRI Rounds 38-46.
    Yan Y; He J; Feng Y; Lin P; Tao H; Huang SY
    Proteins; 2020 Aug; 88(8):1055-1069. PubMed ID: 31994779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to choose templates for modeling of protein complexes: Insights from benchmarking template-based docking.
    Chakravarty D; McElfresh GW; Kundrotas PJ; Vakser IA
    Proteins; 2020 Aug; 88(8):1070-1081. PubMed ID: 31994759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using restraints in EROS-DOCK improves model quality in pairwise and multicomponent protein docking.
    Ruiz Echartea ME; Ritchie DW; Chauvot de BeauchĂȘne I
    Proteins; 2020 Aug; 88(8):1121-1128. PubMed ID: 32506478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling beta-sheet peptide-protein interactions: Rosetta FlexPepDock in CAPRI rounds 38-45.
    Khramushin A; Marcu O; Alam N; Shimony O; Padhorny D; Brini E; Dill KA; Vajda S; Kozakov D; Schueler-Furman O
    Proteins; 2020 Aug; 88(8):1037-1049. PubMed ID: 31891416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-based modeling and ab-initio docking using CoDock in CAPRI.
    Kong R; Liu RR; Xu XM; Zhang DW; Xu XS; Shi H; Chang S
    Proteins; 2020 Aug; 88(8):1100-1109. PubMed ID: 32181952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ClusPro in rounds 38 to 45 of CAPRI: Toward combining template-based methods with free docking.
    Padhorny D; Porter KA; Ignatov M; Alekseenko A; Beglov D; Kotelnikov S; Ashizawa R; Desta I; Alam N; Sun Z; Brini E; Dill K; Schueler-Furman O; Vajda S; Kozakov D
    Proteins; 2020 Aug; 88(8):1082-1090. PubMed ID: 32142178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of ZDOCK and IRAD in CAPRI rounds 39-45.
    Vreven T; Vangaveti S; Borrman TM; Gaines JC; Weng Z
    Proteins; 2020 Aug; 88(8):1050-1054. PubMed ID: 31994784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of human and server prediction in CAPRI rounds 38-45.
    Duan R; Qiu L; Xu X; Ma Z; Merideth BR; Shyu CR; Zou X
    Proteins; 2020 Aug; 88(8):1110-1120. PubMed ID: 32483825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure prediction of biological assemblies using GALAXY in CAPRI rounds 38-45.
    Park T; Woo H; Baek M; Yang J; Seok C
    Proteins; 2020 Aug; 88(8):1009-1017. PubMed ID: 31774573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust principal component analysis-based prediction of protein-protein interaction hot spots.
    Sitani D; Giorgetti A; Alfonso-Prieto M; Carloni P
    Proteins; 2021 Jun; 89(6):639-647. PubMed ID: 33458895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. mCSM-PPI2: predicting the effects of mutations on protein-protein interactions.
    Rodrigues CHM; Myung Y; Pires DEV; Ascher DB
    Nucleic Acids Res; 2019 Jul; 47(W1):W338-W344. PubMed ID: 31114883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docking proteins and peptides under evolutionary constraints in Critical Assessment of PRediction of Interactions rounds 38 to 45.
    Nadaradjane AA; Quignot C; Traoré S; Andreani J; Guerois R
    Proteins; 2020 Aug; 88(8):986-998. PubMed ID: 31746034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Interaction Z Score Assessment (PIZSA): an empirical scoring scheme for evaluation of protein-protein interactions.
    Roy AA; Dhawanjewar AS; Sharma P; Singh G; Madhusudhan MS
    Nucleic Acids Res; 2019 Jul; 47(W1):W331-W337. PubMed ID: 31114890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview of data-driven HADDOCK strategies in CAPRI rounds 38-45.
    Koukos PI; Roel-Touris J; Ambrosetti F; Geng C; Schaarschmidt J; Trellet ME; Melquiond ASJ; Xue LC; Honorato RV; Moreira I; Kurkcuoglu Z; Vangone A; Bonvin AMJJ
    Proteins; 2020 Aug; 88(8):1029-1036. PubMed ID: 31886559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress and challenges in predicting protein interfaces.
    Esmaielbeiki R; Krawczyk K; Knapp B; Nebel JC; Deane CM
    Brief Bioinform; 2016 Jan; 17(1):117-31. PubMed ID: 25971595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures.
    Maheshwari S; Brylinski M
    BMC Struct Biol; 2015 Nov; 15():23. PubMed ID: 26597230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.