These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28587806)

  • 1. Thermodynamic performance of SNG and power coproduction from MSW with recovery of chemical unreacted gas.
    Fan J; Hong H; Zhang L; Li L; Jin H
    Waste Manag; 2017 Sep; 67():163-170. PubMed ID: 28587806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MSW to synthetic natural gas: System modeling and thermodynamics assessment.
    Zhu L; Zhang L; Fan J; Jiang P; Li L
    Waste Manag; 2016 Feb; 48():257-264. PubMed ID: 26525970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and comparative assessment of municipal solid waste gasification for energy production.
    Arafat HA; Jijakli K
    Waste Manag; 2013 Aug; 33(8):1704-13. PubMed ID: 23726119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.
    Lombardi L; Carnevale EA
    Waste Manag; 2018 Mar; 73():232-246. PubMed ID: 28728789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.
    Jeswani HK; Azapagic A
    Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient conversion of waste-to-SNG via hybrid renewable energy systems for circular economy: Process design, energy, and environmental analysis.
    Kuo PC; Illathukandy B; Sun Z; Aziz M
    Waste Manag; 2023 Jul; 166():1-12. PubMed ID: 37137177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Municipal solid waste gasification by hot recycling blast furnace gas coupled with in-situ decarburization to prepare blast furnace injection of hydrogen-rich gas.
    Qin L; Fang J; Zhu S; Zhao B; Han J
    Waste Manag; 2024 Feb; 174():153-163. PubMed ID: 38056364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand.
    Udomsri S; Martin AR; Fransson TH
    Waste Manag; 2010 Jul; 30(7):1414-22. PubMed ID: 20207531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus™ modelling: Thermodynamic and economic viability.
    Násner AML; Lora EES; Palacio JCE; Rocha MH; Restrepo JC; Venturini OJ; Ratner A
    Waste Manag; 2017 Nov; 69():187-201. PubMed ID: 28797628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.
    Medina Jimenez AC; Nordi GH; Palacios Bereche MC; Bereche RP; Gallego AG; Nebra SA
    Waste Manag Res; 2017 Nov; 35(11):1137-1148. PubMed ID: 28893135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technical assessment of the CLEERGAS moving grate-based process for energy generation from municipal solid waste.
    Lusardi MR; Kohn M; Themelis NJ; Castaldi MJ
    Waste Manag Res; 2014 Aug; 32(8):772-81. PubMed ID: 25096323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis technologies for municipal solid waste: a review.
    Chen D; Yin L; Wang H; He P
    Waste Manag; 2014 Dec; 34(12):2466-86. PubMed ID: 25256662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urban energy mining from municipal solid waste (MSW) via the enhanced thermo-chemical process by carbon dioxide (CO2) as a reaction medium.
    Kwon EE; Castaldi MJ
    Bioresour Technol; 2012 Dec; 125():23-9. PubMed ID: 23018160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating impact of waste reuse on the sustainability of municipal solid waste (MSW) incineration industry using emergy approach: A case study from Sichuan province, China.
    Wang Y; Zhang X; Liao W; Wu J; Yang X; Shui W; Deng S; Zhang Y; Lin L; Xiao Y; Yu X; Peng H
    Waste Manag; 2018 Jul; 77():252-267. PubMed ID: 29705047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three municipal solid waste gasification technologies analysis for electrical energy generation in Brazil.
    Medina Jimenez AC; Bereche RP; Nebra S
    Waste Manag Res; 2019 Jun; 37(6):631-642. PubMed ID: 30983548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternatives for solid waste management in Isfahan, Iran: a case study.
    Abduli MA; Tavakolli H; Azari A
    Waste Manag Res; 2013 May; 31(5):532-7. PubMed ID: 23444149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact.
    Aracil C; Haro P; Fuentes-Cano D; Gómez-Barea A
    Waste Manag; 2018 Jun; 76():443-456. PubMed ID: 29610061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil.
    Ferreira ETF; Balestieri JAP
    Waste Manag Res; 2018 Mar; 36(3):247-258. PubMed ID: 29375021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China.
    Zhao W; van der Voet E; Zhang Y; Huppes G
    Sci Total Environ; 2009 Feb; 407(5):1517-26. PubMed ID: 19068268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical study on municipal solid waste plasma gasification.
    Tavares R; Ramos A; Rouboa A
    Waste Manag; 2019 May; 90():37-45. PubMed ID: 31088672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.