BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 28588240)

  • 1. Structural Modeling of Chromatin Integrates Genome Features and Reveals Chromosome Folding Principle.
    Xie WJ; Meng L; Liu S; Zhang L; Cai X; Gao YQ
    Sci Rep; 2017 Jun; 7(1):2818. PubMed ID: 28588240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization.
    Tjong H; Li W; Kalhor R; Dai C; Hao S; Gong K; Zhou Y; Li H; Zhou XJ; Le Gros MA; Larabell CA; Chen L; Alber F
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):E1663-72. PubMed ID: 26951677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Compartmentalization of the cell nucleus and spatial organization of the genome].
    Gavrilov AA; Razin SV
    Mol Biol (Mosk); 2015; 49(1):26-45. PubMed ID: 25916108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transferable model for chromosome architecture.
    Di Pierro M; Zhang B; Aiden EL; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12168-12173. PubMed ID: 27688758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPIN reveals genome-wide landscape of nuclear compartmentalization.
    Wang Y; Zhang Y; Zhang R; van Schaik T; Zhang L; Sasaki T; Peric-Hupkes D; Chen Y; Gilbert DM; van Steensel B; Belmont AS; Ma J
    Genome Biol; 2021 Jan; 22(1):36. PubMed ID: 33446254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
    Szałaj P; Tang Z; Michalski P; Pietal MJ; Luo OJ; Sadowski M; Li X; Radew K; Ruan Y; Plewczynski D
    Genome Res; 2016 Dec; 26(12):1697-1709. PubMed ID: 27789526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-Dimensional Chromosome Structure Prediction.
    Highsmith M; Cheng J
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the semi-nested community structure of 3D chromosome contact networks.
    Bernenko D; Lee SH; Stenberg P; Lizana L
    PLoS Comput Biol; 2023 Jul; 19(7):e1011185. PubMed ID: 37432974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin organization: form to function.
    de Graaf CA; van Steensel B
    Curr Opin Genet Dev; 2013 Apr; 23(2):185-90. PubMed ID: 23274160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assignment of the somatic A/B compartments to chromatin domains in giant transcriptionally active lampbrush chromosomes.
    Krasikova A; Kulikova T; Rodriguez Ramos JS; Maslova A
    Epigenetics Chromatin; 2023 Jun; 16(1):24. PubMed ID: 37322523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.
    Di Pierro M; Cheng RR; Lieberman Aiden E; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12126-12131. PubMed ID: 29087948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian inference of chromatin structure ensembles from population-averaged contact data.
    Carstens S; Nilges M; Habeck M
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7824-7830. PubMed ID: 32193349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions.
    Xiong K; Ma J
    Nat Commun; 2019 Nov; 10(1):5069. PubMed ID: 31699985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial organization of chromatin domains and compartments in single chromosomes.
    Wang S; Su JH; Beliveau BJ; Bintu B; Moffitt JR; Wu CT; Zhuang X
    Science; 2016 Aug; 353(6299):598-602. PubMed ID: 27445307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HiCHap: a package to correct and analyze the diploid Hi-C data.
    Luo H; Li X; Fu H; Peng C
    BMC Genomics; 2020 Oct; 21(1):746. PubMed ID: 33109075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals.
    Álvarez-González L; Arias-Sardá C; Montes-Espuña L; Marín-Gual L; Vara C; Lister NC; Cuartero Y; Garcia F; Deakin J; Renfree MB; Robinson TJ; Martí-Renom MA; Waters PD; Farré M; Ruiz-Herrera A
    Cell Rep; 2022 Dec; 41(12):111839. PubMed ID: 36543130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes.
    Fan H; Lv P; Huo X; Wu J; Wang Q; Cheng L; Liu Y; Tang QQ; Zhang L; Zhang F; Zheng X; Wu H; Wen B
    Genome Res; 2018 Feb; 28(2):192-202. PubMed ID: 29273625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weak interactions in higher-order chromatin organization.
    Kantidze OL; Razin SV
    Nucleic Acids Res; 2020 May; 48(9):4614-4626. PubMed ID: 32313950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principles of 3D compartmentalization of the human genome.
    Nichols MH; Corces VG
    Cell Rep; 2021 Jun; 35(13):109330. PubMed ID: 34192544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.