BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28588449)

  • 1. Long-Term Assessment of AAV-Mediated Zinc Finger Nuclease Expression in the Mouse Brain.
    Zahur M; Tolö J; Bähr M; Kügler S
    Front Mol Neurosci; 2017; 10():142. PubMed ID: 28588449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Codon swapping of zinc finger nucleases confers expression in primary cells and in vivo from a single lentiviral vector.
    Abarrategui-Pontes C; Créneguy A; Thinard R; Fine EJ; Thepenier V; Fournier le RL; Cradick TJ; Bao G; Tesson L; Podevin G; Anegon I; Nguyen TH
    Curr Gene Ther; 2014; 14(5):365-76. PubMed ID: 25687502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-viral Delivery of Zinc Finger Nuclease mRNA Enables Highly Efficient In Vivo Genome Editing of Multiple Therapeutic Gene Targets.
    Conway A; Mendel M; Kim K; McGovern K; Boyko A; Zhang L; Miller JC; DeKelver RC; Paschon DE; Mui BL; Lin PJC; Tam YK; Barbosa C; Redelmeier T; Holmes MC; Lee G
    Mol Ther; 2019 Apr; 27(4):866-877. PubMed ID: 30902585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basics of genome editing technology and its application in livestock species.
    Petersen B
    Reprod Domest Anim; 2017 Aug; 52 Suppl 3():4-13. PubMed ID: 28815851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origins of Programmable Nucleases for Genome Engineering.
    Chandrasegaran S; Carroll D
    J Mol Biol; 2016 Feb; 428(5 Pt B):963-89. PubMed ID: 26506267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus).
    Aluru N; Karchner SI; Franks DG; Nacci D; Champlin D; Hahn ME
    Aquat Toxicol; 2015 Jan; 158():192-201. PubMed ID: 25481785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endonucleases: new tools to edit the mouse genome.
    Wijshake T; Baker DJ; van de Sluis B
    Biochim Biophys Acta; 2014 Oct; 1842(10):1942-1950. PubMed ID: 24794718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech.
    Saha SK; Saikot FK; Rahman MS; Jamal MAHM; Rahman SMK; Islam SMR; Kim KH
    Mol Ther Nucleic Acids; 2019 Mar; 14():212-238. PubMed ID: 30641475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in genetic modification of farm animals using zinc-finger nucleases (ZFN).
    Petersen B; Niemann H
    Chromosome Res; 2015 Feb; 23(1):7-15. PubMed ID: 25596823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inclusion of homologous DNA in nuclease-mediated gene targeting facilitates a higher incidence of bi-allelically modified cells.
    Beaton BP; Kwon DN; Choi YJ; Kim JH; Samuel MS; Benne JA; Wells KD; Lee K; Kim JH; Prather RS
    Xenotransplantation; 2015; 22(5):379-90. PubMed ID: 26381494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of Alternative Nucleases in the Age of CRISPR/Cas9.
    Guha TK; Edgell DR
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29186020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant Biotechnology Applications of Zinc Finger Technology.
    Novak S
    Methods Mol Biol; 2019; 1864():295-310. PubMed ID: 30415344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Zinc Finger Nucleases Versus CRISPR-Specific Nucleases for Genome Editing of the Wiskott-Aldrich Syndrome Locus.
    Gutierrez-Guerrero A; Sanchez-Hernandez S; Galvani G; Pinedo-Gomez J; Martin-Guerra R; Sanchez-Gilabert A; Aguilar-González A; Cobo M; Gregory P; Holmes M; Benabdellah K; Martin F
    Hum Gene Ther; 2018 Mar; 29(3):366-380. PubMed ID: 28922955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of the Genome of Domestic Animals.
    Lotti SN; Polkoff KM; Rubessa M; Wheeler MB
    Anim Biotechnol; 2017 Jul; 28(3):198-210. PubMed ID: 28103141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CRISPR-Cas system for plant genome editing: advances and opportunities.
    Kumar V; Jain M
    J Exp Bot; 2015 Jan; 66(1):47-57. PubMed ID: 25371501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Editing the Sickle Cell Disease Mutation in Human Hematopoietic Stem Cells: Comparison of Endonucleases and Homologous Donor Templates.
    Romero Z; Lomova A; Said S; Miggelbrink A; Kuo CY; Campo-Fernandez B; Hoban MD; Masiuk KE; Clark DN; Long J; Sanchez JM; Velez M; Miyahira E; Zhang R; Brown D; Wang X; Kurmangaliyev YZ; Hollis RP; Kohn DB
    Mol Ther; 2019 Aug; 27(8):1389-1406. PubMed ID: 31178391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining.
    Bonawitz ND; Ainley WM; Itaya A; Chennareddy SR; Cicak T; Effinger K; Jiang K; Mall TK; Marri PR; Samuel JP; Sardesai N; Simpson M; Folkerts O; Sarria R; Webb SR; Gonzalez DO; Simmonds DH; Pareddy DR
    Plant Biotechnol J; 2019 Apr; 17(4):750-761. PubMed ID: 30220095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sandwiched zinc-finger nucleases demonstrating higher homologous recombination rates than conventional zinc-finger nucleases in mammalian cells.
    Mori T; Mori K; Tobimatsu T; Sera T
    Bioorg Med Chem Lett; 2014 Feb; 24(3):813-6. PubMed ID: 24412074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees.
    Peer R; Rivlin G; Golobovitch S; Lapidot M; Gal-On A; Vainstein A; Tzfira T; Flaishman MA
    Planta; 2015 Apr; 241(4):941-51. PubMed ID: 25528147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.