These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 28589412)
1. Serum CTX levels and histomorphometric analysis in Src versus RANKL knockout mice. Takeshita S; Fumoto T; Ito M; Ikeda K J Bone Miner Metab; 2018 May; 36(3):264-273. PubMed ID: 28589412 [TBL] [Abstract][Full Text] [Related]
2. Targeted overexpression of osteoactivin in cells of osteoclastic lineage promotes osteoclastic resorption and bone loss in mice. Sheng MH; Wergedal JE; Mohan S; Amoui M; Baylink DJ; Lau KH PLoS One; 2012; 7(4):e35280. PubMed ID: 22536365 [TBL] [Abstract][Full Text] [Related]
3. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner. Pellegrini GG; Morales CC; Wallace TC; Plotkin LI; Bellido T Nutrients; 2016 Jul; 8(7):. PubMed ID: 27409635 [TBL] [Abstract][Full Text] [Related]
4. Targeted disruption of leucine-rich repeat kinase 1 but not leucine-rich repeat kinase 2 in mice causes severe osteopetrosis. Xing W; Liu J; Cheng S; Vogel P; Mohan S; Brommage R J Bone Miner Res; 2013 Sep; 28(9):1962-74. PubMed ID: 23526378 [TBL] [Abstract][Full Text] [Related]
5. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation. Thudium CS; Moscatelli I; Flores C; Thomsen JS; Brüel A; Gudmann NS; Hauge EM; Karsdal MA; Richter J; Henriksen K Calcif Tissue Int; 2014 Jul; 95(1):83-93. PubMed ID: 24838599 [TBL] [Abstract][Full Text] [Related]
6. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637 [TBL] [Abstract][Full Text] [Related]
7. GPCR kinase 2 interacting protein 1 (GIT1) regulates osteoclast function and bone mass. Menon P; Yin G; Smolock EM; Zuscik MJ; Yan C; Berk BC J Cell Physiol; 2010 Nov; 225(3):777-85. PubMed ID: 20568227 [TBL] [Abstract][Full Text] [Related]
8. Thrombin receptor deficiency leads to a high bone mass phenotype by decreasing the RANKL/OPG ratio. Tudpor K; van der Eerden BC; Jongwattanapisan P; Roelofs JJ; van Leeuwen JP; Bindels RJ; Hoenderop JG Bone; 2015 Mar; 72():14-22. PubMed ID: 25460576 [TBL] [Abstract][Full Text] [Related]
10. VEGF-C, a lymphatic growth factor, is a RANKL target gene in osteoclasts that enhances osteoclastic bone resorption through an autocrine mechanism. Zhang Q; Guo R; Lu Y; Zhao L; Zhou Q; Schwarz EM; Huang J; Chen D; Jin ZG; Boyce BF; Xing L J Biol Chem; 2008 May; 283(19):13491-9. PubMed ID: 18359770 [TBL] [Abstract][Full Text] [Related]
11. The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts. Huang S; Eleniste PP; Wayakanon K; Mandela P; Eipper BA; Mains RE; Allen MR; Bruzzaniti A Bone; 2014 Mar; 60():235-45. PubMed ID: 24380811 [TBL] [Abstract][Full Text] [Related]
12. Ablation of Stabilin-1 Enhances Bone-Resorbing Activity in Osteoclasts In Vitro. Kim SY; Lee EH; Park SY; Choi H; Koh JT; Park EK; Kim IS; Kim JE Calcif Tissue Int; 2019 Aug; 105(2):205-214. PubMed ID: 31025051 [TBL] [Abstract][Full Text] [Related]
13. Ablation of p38α MAPK Signaling in Osteoblast Lineage Cells Protects Mice From Bone Loss Induced by Estrogen Deficiency. Thouverey C; Caverzasio J Endocrinology; 2015 Dec; 156(12):4377-87. PubMed ID: 26441240 [TBL] [Abstract][Full Text] [Related]
14. Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair. Georgy SR; Pagel CN; Ghasem-Zadeh A; Zebaze RM; Pike RN; Sims NA; Mackie EJ Bone; 2012 Mar; 50(3):704-12. PubMed ID: 22173052 [TBL] [Abstract][Full Text] [Related]
15. Zebrafish scales respond differently to in vitro dynamic and static acceleration: analysis of interaction between osteoblasts and osteoclasts. Kitamura K; Takahira K; Inari M; Satoh Y; Hayakawa K; Tabuchi Y; Ogai K; Nishiuchi T; Kondo T; Mikuni-Takagaki Y; Chen W; Hattori A; Suzuki N Comp Biochem Physiol A Mol Integr Physiol; 2013 Sep; 166(1):74-80. PubMed ID: 23632157 [TBL] [Abstract][Full Text] [Related]
16. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nakashima T; Hayashi M; Fukunaga T; Kurata K; Oh-Hora M; Feng JQ; Bonewald LF; Kodama T; Wutz A; Wagner EF; Penninger JM; Takayanagi H Nat Med; 2011 Sep; 17(10):1231-4. PubMed ID: 21909105 [TBL] [Abstract][Full Text] [Related]
17. WHI-131 Promotes Osteoblast Differentiation and Prevents Osteoclast Formation and Resorption in Mice. Cheon YH; Kim JY; Baek JM; Ahn SJ; Jun HY; Erkhembaatar M; Kim MS; Lee MS; Oh J J Bone Miner Res; 2016 Feb; 31(2):403-15. PubMed ID: 26255791 [TBL] [Abstract][Full Text] [Related]
18. The inhibitory effects of a RANKL-binding peptide on articular and periarticular bone loss in a murine model of collagen-induced arthritis: a bone histomorphometric study. Kato G; Shimizu Y; Arai Y; Suzuki N; Sugamori Y; Maeda M; Takahashi M; Tamura Y; Wakabayashi N; Murali R; Ono T; Ohya K; Mise-Omata S; Aoki K Arthritis Res Ther; 2015 Sep; 17(1):251. PubMed ID: 26373710 [TBL] [Abstract][Full Text] [Related]
19. Rab27a and Rab27b are involved in stimulation-dependent RANKL release from secretory lysosomes in osteoblastic cells. Kariya Y; Honma M; Hanamura A; Aoki S; Ninomiya T; Nakamichi Y; Udagawa N; Suzuki H J Bone Miner Res; 2011 Apr; 26(4):689-703. PubMed ID: 20939018 [TBL] [Abstract][Full Text] [Related]
20. Osteoblast-Specific Overexpression of Human WNT16 Increases Both Cortical and Trabecular Bone Mass and Structure in Mice. Alam I; Alkhouli M; Gerard-O'Riley RL; Wright WB; Acton D; Gray AK; Patel B; Reilly AM; Lim KE; Robling AG; Econs MJ Endocrinology; 2016 Feb; 157(2):722-36. PubMed ID: 26584014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]