These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 28589412)
21. Cortical bone loss caused by glucocorticoid excess requires RANKL production by osteocytes and is associated with reduced OPG expression in mice. Piemontese M; Xiong J; Fujiwara Y; Thostenson JD; O'Brien CA Am J Physiol Endocrinol Metab; 2016 Sep; 311(3):E587-93. PubMed ID: 27460899 [TBL] [Abstract][Full Text] [Related]
22. The androgen receptor has no direct antiresorptive actions in mouse osteoclasts. Sinnesael M; Jardi F; Deboel L; Laurent MR; Dubois V; Zajac JD; Davey RA; Carmeliet G; Claessens F; Vanderschueren D Mol Cell Endocrinol; 2015 Aug; 411():198-206. PubMed ID: 25958043 [TBL] [Abstract][Full Text] [Related]
23. Inhibition of osteocyte apoptosis prevents the increase in osteocytic receptor activator of nuclear factor κB ligand (RANKL) but does not stop bone resorption or the loss of bone induced by unloading. Plotkin LI; Gortazar AR; Davis HM; Condon KW; Gabilondo H; Maycas M; Allen MR; Bellido T J Biol Chem; 2015 Jul; 290(31):18934-42. PubMed ID: 26085098 [TBL] [Abstract][Full Text] [Related]
24. Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. Koyama H; Nakade O; Takada Y; Kaku T; Lau KH J Bone Miner Res; 2002 Jul; 17(7):1219-29. PubMed ID: 12096835 [TBL] [Abstract][Full Text] [Related]
25. The role of miR-150 regulates bone cell differentiation and function. Moussa FM; Cook BP; Sondag GR; DeSanto M; Obri MS; McDermott SE; Safadi FF Bone; 2021 Apr; 145():115470. PubMed ID: 32526406 [TBL] [Abstract][Full Text] [Related]
26. Endogenous parathyroid hormone (PTH) signals through osteoblasts via RANKL during fracture healing to affect osteoclasts. Sun P; Wang M; Yin GY Biochem Biophys Res Commun; 2020 May; 525(4):850-856. PubMed ID: 32169280 [TBL] [Abstract][Full Text] [Related]
27. Osteoprotegerin deficiency attenuates strontium-mediated inhibition of osteoclastogenesis and bone resorption. Peng S; Liu XS; Zhou G; Li Z; Luk KD; Guo XE; Lu WW J Bone Miner Res; 2011 Jun; 26(6):1272-82. PubMed ID: 21611968 [TBL] [Abstract][Full Text] [Related]
28. Interleukin-6 deletion stimulates revascularization and new bone formation following ischemic osteonecrosis in a murine model. Kuroyanagi G; Adapala NS; Yamaguchi R; Kamiya N; Deng Z; Aruwajoye O; Kutschke M; Chen E; Jo C; Ren Y; Kim HKW Bone; 2018 Nov; 116():221-231. PubMed ID: 30125727 [TBL] [Abstract][Full Text] [Related]
29. GATA4 represses RANKL in osteoblasts via multiple long-range enhancers to regulate osteoclast differentiation. Khalid AB; Slayden AV; Kumpati J; Perry CD; Berryhill SB; Crawford JA; Fatima I; Morselli M; Pellegrini M; Miranda-Carboni GA; Krum SA Bone; 2018 Nov; 116():78-86. PubMed ID: 30031905 [TBL] [Abstract][Full Text] [Related]
30. Histochemical assessment for osteoblastic activity coupled with dysfunctional osteoclasts in c-src deficient mice. Toray H; Hasegawa T; Sakagami N; Tsuchiya E; Kudo A; Zhao S; Moritani Y; Abe M; Yoshida T; Yamamoto T; Yamamoto T; Oda K; Udagawa N; Luiz de Freitas PH; Li M Biomed Res; 2017; 38(2):123-134. PubMed ID: 28442663 [TBL] [Abstract][Full Text] [Related]
32. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Peng S; Liu XS; Huang S; Li Z; Pan H; Zhen W; Luk KD; Guo XE; Lu WW Bone; 2011 Dec; 49(6):1290-8. PubMed ID: 21925296 [TBL] [Abstract][Full Text] [Related]
33. IL-1 plays an important role in the bone metabolism under physiological conditions. Lee YM; Fujikado N; Manaka H; Yasuda H; Iwakura Y Int Immunol; 2010 Oct; 22(10):805-16. PubMed ID: 20679512 [TBL] [Abstract][Full Text] [Related]
34. Evidence for altered osteoclastogenesis in splenocyte cultures from Cyp27b1 knockout mice. Reinke DC; Kogawa M; Barratt KR; Morris HA; Anderson PH; Atkins GJ J Steroid Biochem Mol Biol; 2016 Nov; 164():353-360. PubMed ID: 26639637 [TBL] [Abstract][Full Text] [Related]
35. Targeted disruption of BMP signaling through type IA receptor (BMPR1A) in osteocyte suppresses SOST and RANKL, leading to dramatic increase in bone mass, bone mineral density and mechanical strength. Kamiya N; Shuxian L; Yamaguchi R; Phipps M; Aruwajoye O; Adapala NS; Yuan H; Kim HK; Feng JQ Bone; 2016 Oct; 91():53-63. PubMed ID: 27402532 [TBL] [Abstract][Full Text] [Related]
36. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function. Furlan F; Galbiati C; Jorgensen NR; Jensen JE; Mrak E; Rubinacci A; Talotta F; Verde P; Blasi F J Bone Miner Res; 2007 Sep; 22(9):1387-96. PubMed ID: 17539736 [TBL] [Abstract][Full Text] [Related]
37. RANKL (Receptor Activator of NFκB Ligand) Produced by Osteocytes Is Required for the Increase in B Cells and Bone Loss Caused by Estrogen Deficiency in Mice. Fujiwara Y; Piemontese M; Liu Y; Thostenson JD; Xiong J; O'Brien CA J Biol Chem; 2016 Nov; 291(48):24838-24850. PubMed ID: 27733688 [TBL] [Abstract][Full Text] [Related]
38. A novel role of helix-loop-helix transcriptional factor Bhlhe40 in osteoclast activation. Hirata H; Kamohara A; Murayama M; Nishioka K; Honda H; Urano Y; Soejima H; Oki S; Kukita T; Kawano S; Mawatari M; Kukita A J Cell Physiol; 2022 Oct; 237(10):3912-3926. PubMed ID: 35908202 [TBL] [Abstract][Full Text] [Related]
39. Cholesterol-sensing receptors, liver X receptor alpha and beta, have novel and distinct roles in osteoclast differentiation and activation. Robertson KM; Norgård M; Windahl SH; Hultenby K; Ohlsson C; Andersson G; Gustafsson JA J Bone Miner Res; 2006 Aug; 21(8):1276-87. PubMed ID: 16869726 [TBL] [Abstract][Full Text] [Related]
40. Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis. Ozaki Y; Koide M; Furuya Y; Ninomiya T; Yasuda H; Nakamura M; Kobayashi Y; Takahashi N; Yoshinari N; Udagawa N PLoS One; 2017; 12(9):e0184904. PubMed ID: 28937990 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]