BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28589855)

  • 1. Identifying subtype-specific associations between gene expression and DNA methylation profiles in breast cancer.
    Lee G; Bang L; Kim SY; Kim D; Sohn KA
    BMC Med Genomics; 2017 May; 10(Suppl 1):28. PubMed ID: 28589855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and methylation patterns partition luminal-A breast tumors into distinct prognostic subgroups.
    Netanely D; Avraham A; Ben-Baruch A; Evron E; Shamir R
    Breast Cancer Res; 2016 Jul; 18(1):74. PubMed ID: 27386846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of breast cancer subtypes by AP-ISA biclustering.
    Yang L; Shen Y; Yuan X; Zhang J; Wei J
    BMC Bioinformatics; 2017 Nov; 18(1):481. PubMed ID: 29137596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated analysis of gene expression and methylation profiles of 48 candidate genes in breast cancer patients.
    Li Z; Heng J; Yan J; Guo X; Tang L; Chen M; Peng L; Wu Y; Wang S; Xiao Z; Deng Z; Dai L; Wang J
    Breast Cancer Res Treat; 2016 Nov; 160(2):371-383. PubMed ID: 27722841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subtype-specific CpG island shore methylation and mutation patterns in 30 breast cancer cell lines.
    Chae H; Lee S; Nephew KP; Kim S
    BMC Syst Biol; 2016 Dec; 10(Suppl 4):116. PubMed ID: 28155687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of cancer subtype prediction by incorporating transcriptome expression data and heterogeneous biological networks.
    Guo Y; Qi Y; Li Z; Shang X
    BMC Med Genomics; 2018 Dec; 11(Suppl 6):119. PubMed ID: 30598111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration.
    Verbeke LP; Van den Eynden J; Fierro AC; Demeester P; Fostier J; Marchal K
    PLoS One; 2015; 10(7):e0133503. PubMed ID: 26217958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competing endogenous RNA network analysis identifies critical genes among the different breast cancer subtypes.
    Chen J; Xu J; Li Y; Zhang J; Chen H; Lu J; Wang Z; Zhao X; Xu K; Li Y; Li X; Zhang Y
    Oncotarget; 2017 Feb; 8(6):10171-10184. PubMed ID: 28052038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Methylation Pattern and Genes Associated with Breast Cancer Subtypes.
    Chen L; Zeng T; Pan X; Zhang YH; Huang T; Cai YD
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the effect of DNA methylation on gene expression in cancer cells.
    Lee CJ; Evans J; Kim K; Chae H; Kim S
    Methods Mol Biol; 2014; 1101():161-78. PubMed ID: 24233782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-Seq-Based Breast Cancer Subtypes Classification Using Machine Learning Approaches.
    Yu Z; Wang Z; Yu X; Zhang Z
    Comput Intell Neurosci; 2020; 2020():4737969. PubMed ID: 33178256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survival differences of CIMP subtypes integrated with CNA information in human breast cancer.
    Wang H; Yan W; Zhang S; Gu Y; Wang Y; Wei Y; Liu H; Wang F; Wu Q; Zhang Y
    Oncotarget; 2017 Jul; 8(30):48807-48819. PubMed ID: 28415743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative epigenetic analyses reveal distinct patterns of oncogenic pathways activation in breast cancer subtypes.
    Li Y; Li S; Chen J; Shao T; Jiang C; Wang Y; Chen H; Xu J; Li X
    Hum Mol Genet; 2014 Oct; 23(20):5378-93. PubMed ID: 24871326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering DNA methylation patterns for long non-coding RNAs associated with cancer subtypes.
    Ma X; Yu L; Wang P; Yang X
    Comput Biol Chem; 2017 Aug; 69():164-170. PubMed ID: 28501295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning with evolutionary and genomic profiles for identifying cancer subtypes.
    Lin CY; Ruan P; Li R; Yang JM; See S; Song J; Akutsu T
    J Bioinform Comput Biol; 2019 Jun; 17(3):1940005. PubMed ID: 31288637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges in projecting clustering results across gene expression-profiling datasets.
    Lusa L; McShane LM; Reid JF; De Cecco L; Ambrogi F; Biganzoli E; Gariboldi M; Pierotti MA
    J Natl Cancer Inst; 2007 Nov; 99(22):1715-23. PubMed ID: 18000217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific breast cancer prognosis-subtype distinctions based on DNA methylation patterns.
    Zhang S; Wang Y; Gu Y; Zhu J; Ci C; Guo Z; Chen C; Wei Y; Lv W; Liu H; Zhang D; Zhang Y
    Mol Oncol; 2018 Jun; 12(7):1047-1060. PubMed ID: 29675884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breast cancer subtype dictates DNA methylation and ALDH1A3-mediated expression of tumor suppressor RARRES1.
    Coyle KM; Murphy JP; Vidovic D; Vaghar-Kashani A; Dean CA; Sultan M; Clements D; Wallace M; Thomas ML; Hundert A; Giacomantonio CA; Helyer L; Gujar SA; Lee PW; Weaver IC; Marcato P
    Oncotarget; 2016 Jul; 7(28):44096-44112. PubMed ID: 27286452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Novel Breast Cancer Subtype-Specific Biomarkers by Integrating Genomics Analysis of DNA Copy Number Aberrations and miRNA-mRNA Dual Expression Profiling.
    Li D; Xia H; Li ZY; Hua L; Li L
    Biomed Res Int; 2015; 2015():746970. PubMed ID: 25961039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.