These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 28589942)

  • 1. Misfolded polypeptides are selectively recognized and transported toward aggresomes by a CED complex.
    Park J; Park Y; Ryu I; Choi MH; Lee HJ; Oh N; Kim K; Kim KM; Choe J; Lee C; Baik JH; Kim YK
    Nat Commun; 2017 Jun; 8():15730. PubMed ID: 28589942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosstalk between translation and the aggresome-autophagy pathway.
    Park Y; Park J; Kim YK
    Autophagy; 2018; 14(6):1079-1081. PubMed ID: 28837386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TRIM28 functions as a negative regulator of aggresome formation.
    Chang J; Hwang HJ; Kim B; Choi YG; Park J; Park Y; Lee BS; Park H; Yoon MJ; Woo JS; Kim C; Park MS; Lee JB; Kim YK
    Autophagy; 2021 Dec; 17(12):4231-4248. PubMed ID: 33783327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonsense-mediated mRNA decay factor UPF1 promotes aggresome formation.
    Park Y; Park J; Hwang HJ; Kim B; Jeong K; Chang J; Lee JB; Kim YK
    Nat Commun; 2020 Jun; 11(1):3106. PubMed ID: 32561765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. YTHDF2 facilitates aggresome formation via UPF1 in an m
    Hwang HJ; Park TL; Kim HI; Park Y; Kim G; Song C; Cho WK; Kim YK
    Nat Commun; 2023 Oct; 14(1):6248. PubMed ID: 37803021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggresome formation and neurodegenerative diseases: therapeutic implications.
    Olzmann JA; Li L; Chin LS
    Curr Med Chem; 2008; 15(1):47-60. PubMed ID: 18220762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery.
    Mi L; Gan N; Chung FL
    Biochem Biophys Res Commun; 2009 Oct; 388(2):456-62. PubMed ID: 19682429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway.
    Olzmann JA; Chin LS
    Autophagy; 2008 Jan; 4(1):85-7. PubMed ID: 17957134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein.
    Taylor JP; Tanaka F; Robitschek J; Sandoval CM; Taye A; Markovic-Plese S; Fischbeck KH
    Hum Mol Genet; 2003 Apr; 12(7):749-57. PubMed ID: 12651870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parkin Protects Against Misfolded SOD1 Toxicity by Promoting Its Aggresome Formation and Autophagic Clearance.
    Yung C; Sha D; Li L; Chin LS
    Mol Neurobiol; 2016 Nov; 53(9):6270-6287. PubMed ID: 26563499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation.
    Rodriguez-Gonzalez A; Lin T; Ikeda AK; Simms-Waldrip T; Fu C; Sakamoto KM
    Cancer Res; 2008 Apr; 68(8):2557-60. PubMed ID: 18413721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoplasmic dynein/dynactin mediates the assembly of aggresomes.
    Johnston JA; Illing ME; Kopito RR
    Cell Motil Cytoskeleton; 2002 Sep; 53(1):26-38. PubMed ID: 12211113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long Term Aggresome Accumulation Leads to DNA Damage, p53-dependent Cell Cycle Arrest, and Steric Interference in Mitosis.
    Lu M; Boschetti C; Tunnacliffe A
    J Biol Chem; 2015 Nov; 290(46):27986-8000. PubMed ID: 26408200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UPF1: From mRNA Surveillance to Protein Quality Control.
    Hwang HJ; Park Y; Kim YK
    Biomedicines; 2021 Aug; 9(8):. PubMed ID: 34440199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation.
    Bennett EJ; Bence NF; Jayakumar R; Kopito RR
    Mol Cell; 2005 Feb; 17(3):351-65. PubMed ID: 15694337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclosporin-A-induced prion protein aggresomes are dynamic quality-control cellular compartments.
    Ben-Gedalya T; Lyakhovetsky R; Yedidia Y; Bejerano-Sagie M; Kogan NM; Karpuj MV; Kaganovich D; Cohen E
    J Cell Sci; 2011 Jun; 124(Pt 11):1891-902. PubMed ID: 21558416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress.
    Kawaguchi Y; Kovacs JJ; McLaurin A; Vance JM; Ito A; Yao TP
    Cell; 2003 Dec; 115(6):727-38. PubMed ID: 14675537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triggering aggresome formation. Dissecting aggresome-targeting and aggregation signals in synphilin 1.
    Zaarur N; Meriin AB; Gabai VL; Sherman MY
    J Biol Chem; 2008 Oct; 283(41):27575-27584. PubMed ID: 18635553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy.
    Szeto J; Kaniuk NA; Canadien V; Nisman R; Mizushima N; Yoshimori T; Bazett-Jones DP; Brumell JH
    Autophagy; 2006; 2(3):189-99. PubMed ID: 16874109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting bortezomib-induced aggresome formation using vinorelbine enhances the cytotoxic effect along with ER stress loading in breast cancer cell lines.
    Miyahara K; Kazama H; Kokuba H; Komatsu S; Hirota A; Takemura J; Hirasawa K; Moriya S; Abe A; Hiramoto M; Ishikawa T; Miyazawa K
    Int J Oncol; 2016 Nov; 49(5):1848-1858. PubMed ID: 27601063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.