BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 28590051)

  • 1. A tricorn-rhodamine fluorescent chemosensor for detection of Co
    Li J; Han S
    Luminescence; 2017 Dec; 32(8):1448-1455. PubMed ID: 28590051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Optical Detection of Ga
    Panda SK; Sahu RP; Goswami C; Singh AK
    ACS Appl Bio Mater; 2023 Dec; 6(12):5582-5595. PubMed ID: 37971315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A colorimetric and fluorescent probe of lignocellulose nanofiber composite modified with Rhodamine 6G derivative for reversible, selective and sensitive detection of metal ions in wastewater.
    Li Z; Zhang M; An C; Yang H; Feng L; Cui Z; Shi M; Zheng D; Long S; Song D
    Int J Biol Macromol; 2024 May; 267(Pt 2):131416. PubMed ID: 38582486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rhodamine NIR probe for naked eye detection of mercury ions and its application.
    Huang J; Liu K; Tian J; Wei H; Kan C
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Feb; 306():123553. PubMed ID: 37898057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A near-infrared fluorescent probe for the detection of Cu
    Yuan YY; Hao YT; Zeng D; Pan P; Lu JX; Zhang B; He SN; Xing AP; Chen SQ; Yuan J
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124407. PubMed ID: 38723466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Al(iii)-responsive "off-on" chemosensor based on rhodamine derivative and its application in cell imaging.
    Yu C; Jian L; Ji Y; Zhang J
    RSC Adv; 2018 Aug; 8(54):31106-31112. PubMed ID: 35548724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and investigation of a series of rhodamine-based fluorescent probes for optical measurements of pH.
    Best QA; Xu R; McCarroll ME; Wang L; Dyer DJ
    Org Lett; 2010 Jul; 12(14):3219-21. PubMed ID: 20572677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Sensitive Probe of Meso-Cyanophenyl Substituted BODIPY Derivative as Fluorescent Chemosensor for the Detection of Multiple Heavy Metal Ions.
    Li X; Liu X
    J Fluoresc; 2024 Jan; ():. PubMed ID: 38285157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-assisted synthesis for a highly selective rhodamine 6G-derived fluorescent sensor and bioimaging.
    Aduroja O; Abiye I; Fathima A; Tadesse S; Ozturk B; Wachira J; Abebe F
    Inorg Chem Commun; 2023 Jan; 147():. PubMed ID: 37485236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly selective, sensitive and biocompatible rhodamine-based isomers for Al
    Ghosh S; Mahato S; Dutta T; Ahamed Z; Ghosh P; Roy P
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123455. PubMed ID: 37813088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of 4,5-diphenyl-1H-imidazole derived highly selective 'Turn-Off' fluorescent chemosensor for iron(III) ions detection and biological applications.
    Rajendran P; Murugaperumal P; Nallathambi S; Perdih F; Ayyanar S; Chellappan S
    Luminescence; 2024 Mar; 39(3):e4694. PubMed ID: 38414310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fluorescent chemosensor for selective detection of chromium (III) ions in environmentally and biologically relevant samples.
    Divya D; Ramanjaneyulu M; Nandhagopal M; Srinivasan V; Thennarasu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Aug; 316():124286. PubMed ID: 38663135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrogallol-based dipodal optical probe as new smart analytical tool for sustainable detection of cobalt in biosystem.
    Dangi V; Kandhal J; Gupta A; Baral M; Kanungo BK
    Methods; 2023 Dec; 220():79-89. PubMed ID: 37956725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive and selective colorimetric and off-on fluorescent reversible chemosensors for Al³⁺ based on the rhodamine fluorophore.
    Mergu N; Singh AK; Gupta VK
    Sensors (Basel); 2015 Apr; 15(4):9097-111. PubMed ID: 25897498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a rhodamine-based fluorescent probe for ATP detection for potential applications in meat freshness assessment.
    Su Y; Gu M; Li C; Zhang D; Ren Y; Chen L; Li S; Zheng X
    Food Chem; 2024 Aug; 450():139209. PubMed ID: 38615529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New bis(rhodamine)-Based Colorimetric Chemosensor for Cu
    Abebe F; Gonzalez J; Makins-Dennis K; Shaw R
    Inorg Chem Commun; 2020 Oct; 120():. PubMed ID: 32863739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Amino-pillar[5]arene as a Fluorescent Probe for Highly Selective Detection of Au
    Yang JL; Yang YH; Xun YP; Wei KK; Gu J; Chen M; Yang LJ
    ACS Omega; 2019 Oct; 4(18):17903-17909. PubMed ID: 31681900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualisation of DCP, a nerve agent mimic, in Catfish brain by a simple chemosensor.
    Sarkar HS; Ghosh A; Das S; Maiti PK; Maitra S; Mandal S; Sahoo P
    Sci Rep; 2018 Feb; 8(1):3402. PubMed ID: 29467435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodamine-Anchored Polyacrylamide Hydrogel for Fluorescent Naked-Eye Sensing of Fe
    Jiang D; Zheng M; Ma X; Zhang Y; Jiang S; Li J; Zhang C; Liu K; Li L
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Dual Fluorescence-Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM-EPR Spectroscopy.
    Dong P; Stellmacher J; Bouchet LM; Nieke M; Kumar A; Osorio-Blanco ER; Nagel G; Lohan SB; Teutloff C; Patzelt A; Schäfer-Korting M; Calderón M; Meinke MC; Alexiev U
    Angew Chem Int Ed Engl; 2021 Jun; 60(27):14938-14944. PubMed ID: 33544452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.