These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28590456)

  • 1. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.
    Kim J; Lee C; Park S
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuzzy Logic-Based and Nondestructive Concrete Strength Evaluation Using Modified Carbon Nanotubes as a Hybrid PZT-CNT Sensor.
    Tareen N; Kim J; Kim WK; Park S
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34070776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis and Strength Estimation of Fresh Concrete Based on Ultrasonic Wave Propagation and Maturity Using Smart Temperature and PZT Sensors.
    Tareen N; Kim J; Kim WK; Park S
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31450825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting concrete strength early age using a combination of machine learning and electromechanical impedance with nano-enhanced sensors.
    Ju H; Xing L; Ali AH; El-Arab IE; Elshekh AEA; Abbas M; Abdullah N; Elattar S; Hashmi A; Ali E; Assilzadeh H
    Environ Res; 2024 May; 258():119248. PubMed ID: 38823615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piezoelectric Sensor-Embedded Smart Rock for Damage Monitoring in a Prestressed Anchorage Zone.
    Pham QQ; Dang NL; Kim JT
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks.
    Trtnik G; Kavcic F; Turk G
    Ultrasonics; 2009 Jan; 49(1):53-60. PubMed ID: 18589471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.
    Yoon H; Kim YJ; Kim HS; Kang JW; Koh HM
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28783128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design optimization of embedded ultrasonic transducers for concrete structures assessment.
    Dumoulin C; Deraemaeker A
    Ultrasonics; 2017 Aug; 79():18-33. PubMed ID: 28412656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Axial Load on Electromechanical Impedance (EMI) of Embedded Piezoceramic Transducers in Steel Fiber Concrete.
    Wang Z; Chen D; Zheng L; Huo L; Song G
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29865190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Steel Plates on Estimation of the Compressive Strength of Concrete via Ultrasonic Testing.
    Rhim HC; Kim DY; Cho CS; Kim DH
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32079190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of concrete slab damage detection based on the electromechanical impedance method.
    Hu X; Zhu H; Wang D
    Sensors (Basel); 2014 Oct; 14(10):19897-909. PubMed ID: 25341438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring the Setting Process of Cementitious Materials Using Guided Waves in Thin Rods.
    Wang D; Yu G; Liu S; Sheng P
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33504105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of External Mechanical Loads on Coda Waves in Concrete.
    Diewald F; Epple N; Kraenkel T; Gehlen C; Niederleithinger E
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nondestructive evaluation of steel-concrete composite structure using high-frequency ultrasonic guided wave.
    Sun H; Zhu J
    Ultrasonics; 2020 Apr; 103():106096. PubMed ID: 32105780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Validation of Slip-Forming Using Ultrasonic Sensors.
    Yoon H; Kim YJ; Chin WJ; Kang JW; Koh HM
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31752423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress Monitoring of Concrete via Uniaxial Piezoelectric Sensor.
    Wu C; Xiang H; Jiang S; Ma S
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless Concrete Strength Monitoring of Wind Turbine Foundations.
    Perry M; Fusiek G; Niewczas P; Rubert T; McAlorum J
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29258176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of fracture properties of concrete at high strain rates.
    Rey-De-Pedraza V; Cendón DA; Sánchez-Gálvez V; Gálvez F
    Philos Trans A Math Phys Eng Sci; 2017 Jan; 375(2085):. PubMed ID: 27956510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evaluation of distributed damage in concrete based on sinusoidal modeling of the ultrasonic response.
    Sepehrinezhad A; Toufigh V
    Ultrasonics; 2018 Sep; 89():195-205. PubMed ID: 29883869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guided Wave Propagation in Detection of Partial Circumferential Debonding in Concrete Structures.
    Zima B
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31086011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.