These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28590463)

  • 1. Prediction and association mapping of agronomic traits in maize using multiple omic data.
    Xu Y; Xu C; Xu S
    Heredity (Edinb); 2017 Sep; 119(3):174-184. PubMed ID: 28590463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolome-wide association studies for agronomic traits of rice.
    Wei J; Wang A; Li R; Qu H; Jia Z
    Heredity (Edinb); 2018 Apr; 120(4):342-355. PubMed ID: 29225351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond Genomic Prediction: Combining Different Types of
    Schrag TA; Westhues M; Schipprack W; Seifert F; Thiemann A; Scholten S; Melchinger AE
    Genetics; 2018 Apr; 208(4):1373-1385. PubMed ID: 29363551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of optimal prediction models using multi-omic data for selecting hybrid rice.
    Wang S; Wei J; Li R; Qu H; Chater JM; Ma R; Li Y; Xie W; Jia Z
    Heredity (Edinb); 2019 Sep; 123(3):395-406. PubMed ID: 30911139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A directed learning strategy integrating multiple omic data improves genomic prediction.
    Hu X; Xie W; Wu C; Xu S
    Plant Biotechnol J; 2019 Oct; 17(10):2011-2020. PubMed ID: 30950198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome-Based Prediction of Complex Traits in Maize.
    Azodi CB; Pardo J; VanBuren R; de Los Campos G; Shiu SH
    Plant Cell; 2020 Jan; 32(1):139-151. PubMed ID: 31641024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing genomic prediction with genome-wide association studies in multiparental maize populations.
    Bian Y; Holland JB
    Heredity (Edinb); 2017 Jun; 118(6):585-593. PubMed ID: 28198815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models.
    Zeng P; Zhou X
    Nat Commun; 2017 Sep; 8(1):456. PubMed ID: 28878256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proximal LAVA method for genome-wide association and prediction of traits with mixed inheritance patterns.
    Waldmann P
    BMC Bioinformatics; 2021 Oct; 22(1):523. PubMed ID: 34702175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer.
    Covarrubias-Pazaran G
    PLoS One; 2016; 11(6):e0156744. PubMed ID: 27271781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolomic prediction of yield in hybrid rice.
    Xu S; Xu Y; Gong L; Zhang Q
    Plant J; 2016 Oct; 88(2):219-227. PubMed ID: 27311694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of parental phenotypic data into multi-omic models improves prediction of yield-related traits in hybrid rice.
    Xu Y; Zhao Y; Wang X; Ma Y; Li P; Yang Z; Zhang X; Xu C; Xu S
    Plant Biotechnol J; 2021 Feb; 19(2):261-272. PubMed ID: 32738177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity to prior specification in Bayesian genome-based prediction models.
    Lehermeier C; Wimmer V; Albrecht T; Auinger HJ; Gianola D; Schmid VJ; Schön CC
    Stat Appl Genet Mol Biol; 2013 Jun; 12(3):375-91. PubMed ID: 23629460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Omics-based hybrid prediction in maize.
    Westhues M; Schrag TA; Heuer C; Thaller G; Utz HF; Schipprack W; Thiemann A; Seifert F; Ehret A; Schlereth A; Stitt M; Nikoloski Z; Willmitzer L; Schön CC; Scholten S; Melchinger AE
    Theor Appl Genet; 2017 Sep; 130(9):1927-1939. PubMed ID: 28647896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide prediction of maize single-cross performance, considering non-additive genetic effects.
    Santos JP; Pereira HD; Von Pinho RG; Pires LP; Camargos RB; Balestre M
    Genet Mol Res; 2015 Dec; 14(4):18471-84. PubMed ID: 26782495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar).
    Bangera R; Correa K; Lhorente JP; Figueroa R; Yáñez JM
    BMC Genomics; 2017 Jan; 18(1):121. PubMed ID: 28143402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving resistance to the European corn borer: a comprehensive study in elite maize using QTL mapping and genome-wide prediction.
    Foiada F; Westermeier P; Kessel B; Ouzunova M; Wimmer V; Mayerhofer W; Presterl T; Dilger M; Kreps R; Eder J; Schön CC
    Theor Appl Genet; 2015 May; 128(5):875-91. PubMed ID: 25758357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensemble Learning of QTL Models Improves Prediction of Complex Traits.
    Bian Y; Holland JB
    G3 (Bethesda); 2015 Aug; 5(10):2073-84. PubMed ID: 26276383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forecasting the accuracy of genomic prediction with different selection targets in the training and prediction set as well as truncation selection.
    Schopp P; Riedelsheimer C; Utz HF; Schön CC; Melchinger AE
    Theor Appl Genet; 2015 Nov; 128(11):2189-201. PubMed ID: 26231985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies.
    Tamba CL; Ni YL; Zhang YM
    PLoS Comput Biol; 2017 Jan; 13(1):e1005357. PubMed ID: 28141824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.