These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28590743)

  • 1. Nanoscale Surface Curvature Effects on Ligand-Nanoparticle Interactions: A Plasmon-Enhanced Spectroscopic Study of Thiolated Ligand Adsorption, Desorption, and Exchange on Gold Nanoparticles.
    Villarreal E; Li GG; Zhang Q; Fu X; Wang H
    Nano Lett; 2017 Jul; 17(7):4443-4452. PubMed ID: 28590743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Monitoring of Ligand Exchange Kinetics on Gold Nanoparticle Surfaces Enabled by Hot Spot-Normalized Surface-Enhanced Raman Scattering.
    Wei H; Leng W; Song J; Liu C; Willner MR; Huang Q; Zhou W; Vikesland PJ
    Environ Sci Technol; 2019 Jan; 53(2):575-585. PubMed ID: 30525495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy.
    DeVetter BM; Mukherjee P; Murphy CJ; Bhargava R
    Nanoscale; 2015 May; 7(19):8766-75. PubMed ID: 25905515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of colloidal gold nanoparticle surface areas, concentrations, and sizes through quantitative ligand adsorption.
    Gadogbe M; Ansar SM; He G; Collier WE; Rodriguez J; Liu D; Chu IW; Zhang D
    Anal Bioanal Chem; 2013 Jan; 405(1):413-22. PubMed ID: 23092965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical THz-SERS Observation of Thiol Monolayers on Au(111) and (100) Using Nanoparticle-assisted Gap-Mode Plasmon Excitation.
    Inagaki M; Motobayashi K; Ikeda K
    J Phys Chem Lett; 2017 Sep; 8(17):4236-4240. PubMed ID: 28830138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Functionalization of Metal Nanoparticles by Conjugated Metal-Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer.
    Hu P; Chen L; Kang X; Chen S
    Acc Chem Res; 2016; 49(10):2251-2260. PubMed ID: 27690382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterning of Self-Assembled Monolayers of Amphiphilic Multisegment Ligands on Nanoparticles and Design Parameters for Protein Interactions.
    Hoff SE; Di Silvio D; Ziolo RF; Moya SE; Heinz H
    ACS Nano; 2022 Jun; 16(6):8766-8783. PubMed ID: 35603431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System.
    Yang G; Hallinan DT
    Sci Rep; 2016 Oct; 6():35339. PubMed ID: 27762394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon-driven oxidative coupling of aniline-derivative adsorbates: A comparative study of para-ethynylaniline and para-mercaptoaniline.
    Chen K; Wang H
    J Chem Phys; 2022 May; 156(20):204705. PubMed ID: 35649839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of thiolated ligand exchange on gold nanoparticles monitored by 1H NMR spectroscopy.
    Smith AM; Marbella LE; Johnston KA; Hartmann MJ; Crawford SE; Kozycz LM; Seferos DS; Millstone JE
    Anal Chem; 2015 Mar; 87(5):2771-8. PubMed ID: 25658511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale simulations of ligand adsorption and exchange on gold nanoparticles.
    Gao HM; Liu H; Qian HJ; Jiao GS; Lu ZY
    Phys Chem Chem Phys; 2018 Jan; 20(3):1381-1394. PubMed ID: 29271449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle Ligand Exchange and Its Effects at the Nanoparticle-Cell Membrane Interface.
    Wang X; Wang X; Bai X; Yan L; Liu T; Wang M; Song Y; Hu G; Gu Z; Miao Q; Chen C
    Nano Lett; 2019 Jan; 19(1):8-18. PubMed ID: 30335394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand Exchange and
    Smith AM; Millstone JE
    Methods Mol Biol; 2017; 1570():17-29. PubMed ID: 28238127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces.
    Wen BY; Jin X; Li Y; Wang YH; Li CY; Liang MM; Panneerselvam R; Xu QC; Wu DY; Yang ZL; Li JF; Tian ZQ
    Analyst; 2016 Jun; 141(12):3731-6. PubMed ID: 27001527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of alkylthiol-capped gold nanoparticles onto alkylthiol self-assembled monolayers: an SPR study.
    Goren M; Galley N; Lennox RB
    Langmuir; 2006 Jan; 22(3):1048-54. PubMed ID: 16430264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Determination and Comparison of the Surface Binding of Phosphonic Acid, Carboxylic Acid, and Catechol Ligands on TiO2 Nanoparticles.
    Zeininger L; Portilla L; Halik M; Hirsch A
    Chemistry; 2016 Sep; 22(38):13506-12. PubMed ID: 27439653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications.
    Liu J
    Phys Chem Chem Phys; 2012 Aug; 14(30):10485-96. PubMed ID: 22739570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-Exchange Dynamics on Gold Nanocrystals: Direct Monitoring of Nanoscale Polyvinylpyrrolidone-Thiol Domain Surface Morphology.
    Zhang S; Kim S; Tsukruk VV
    Langmuir; 2017 Apr; 33(15):3576-3587. PubMed ID: 28335595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are bidentate ligands really better than monodentate ligands for nanoparticles?
    Takeuchi H; Omogo B; Heyes CD
    Nano Lett; 2013 Oct; 13(10):4746-52. PubMed ID: 24016073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.