These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28590756)

  • 21. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness.
    Guerrero-García GI; González-Tovar E; Chávez-Páez M; Kłos J; Lamperski S
    Phys Chem Chem Phys; 2017 Dec; 20(1):262-275. PubMed ID: 29204593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ionic size effects on the Poisson-Boltzmann theory.
    Colla T; Nunes Lopes L; Dos Santos AP
    J Chem Phys; 2017 Jul; 147(1):014104. PubMed ID: 28688437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionic liquid interface at an electrode: simulations of electrochemical properties using an asymmetric restricted primitive model.
    Lu H; Nordholm S; Woodward CE; Forsman J
    J Phys Condens Matter; 2018 Feb; 30(7):074004. PubMed ID: 29300174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential capacitance of an electric double layer with asymmetric solvent-mediated interactions: mean-field theory and Monte Carlo simulations.
    Caetano DLZ; Bossa GV; de Oliveira VM; Brown MA; de Carvalho SJ; May S
    Phys Chem Chem Phys; 2017 Sep; 19(35):23971-23981. PubMed ID: 28831474
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coarse-grained lattice Monte Carlo simulations with continuous interaction potentials.
    Liu X; Seider WD; Sinno T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026708. PubMed ID: 23005883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of ionic size on the structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Phys Chem B; 2011 Sep; 115(37):10903-10. PubMed ID: 21827170
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bulk and liquid-vapor interface of pyrrolidinium-based ionic liquids: a molecular simulation study.
    Paredes X; Fernández J; Pádua AA; Malfreyt P; Malberg F; Kirchner B; Pensado AS
    J Phys Chem B; 2014 Jan; 118(3):731-42. PubMed ID: 24383956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical cell for neutron reflectometry studies of the structure of ionic liquids at electrified interface.
    Lauw Y; Rodopoulos T; Gross M; Nelson A; Gardner R; Horne MD
    Rev Sci Instrum; 2010 Jul; 81(7):074101. PubMed ID: 20687742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water in ionic liquids at electrified interfaces: the anatomy of electrosorption.
    Feng G; Jiang X; Qiao R; Kornyshev AA
    ACS Nano; 2014 Nov; 8(11):11685-94. PubMed ID: 25341189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of spherical electric double layers containing mixed electrolytes: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2010 Aug; 114(32):10550-7. PubMed ID: 20701385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.
    Di Staso G; Clercx HJ; Succi S; Toschi F
    Philos Trans A Math Phys Eng Sci; 2016 Nov; 374(2080):. PubMed ID: 27698045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase behavior and free interfaces of a lattice-gas nematic-liquid-crystal model.
    Bates MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041706. PubMed ID: 12005845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulations of CO2 at an ionic liquid interface: adsorption, ordering, and interfacial crossing.
    Perez-Blanco ME; Maginn EJ
    J Phys Chem B; 2010 Sep; 114(36):11827-37. PubMed ID: 20687572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water/ionic liquid interfaces as fluid scaffolds for the two-dimensional self-assembly of charged nanospheres.
    Nakashima T; Kimizuka N
    Langmuir; 2011 Feb; 27(4):1281-5. PubMed ID: 21218812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integer lattice gas with Monte Carlo collision operator recovers the lattice Boltzmann method with Poisson-distributed fluctuations.
    Blommel T; Wagner AJ
    Phys Rev E; 2018 Feb; 97(2-1):023310. PubMed ID: 29548240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring chemical speciation at electrified interfaces using detailed continuum models.
    Baskin A; Prendergast D
    J Chem Phys; 2019 Jan; 150(4):041725. PubMed ID: 30709310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lattice boltzmann study on the contact angle and contact line dynamics of liquid-vapor interfaces.
    Zhang J; Kwok DY
    Langmuir; 2004 Sep; 20(19):8137-41. PubMed ID: 15350084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrokinetic microfluidic phenomena by a lattice Boltzmann model using a modified Poisson-Boltzmann equation with an excluded volume effect.
    Li B; Kwok DY
    J Chem Phys; 2004 Jan; 120(2):947-53. PubMed ID: 15267931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2008 Oct; 129(15):154906. PubMed ID: 19045228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the influence of Coulomb and dispersion interactions on the wetting behavior of ionic liquids.
    Rane KS; Errington JR
    J Chem Phys; 2014 Nov; 141(17):174706. PubMed ID: 25381536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.