These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 28591205)

  • 1. Shift in tuna catches due to ocean warming.
    Monllor-Hurtado A; Pennino MG; Sanchez-Lizaso JL
    PLoS One; 2017; 12(6):e0178196. PubMed ID: 28591205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signature of ocean warming in global fisheries catch.
    Cheung WW; Watson R; Pauly D
    Nature; 2013 May; 497(7449):365-8. PubMed ID: 23676754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution.
    Dueri S; Bopp L; Maury O
    Glob Chang Biol; 2014 Mar; 20(3):742-53. PubMed ID: 24464855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting current and future global distributions of whale sharks.
    Sequeira AM; Mellin C; Fordham DA; Meekan MG; Bradshaw CJ
    Glob Chang Biol; 2014 Mar; 20(3):778-89. PubMed ID: 23907987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the spatial behaviour of a tropical tuna purse seine fleet.
    Davies TK; Mees CC; Milner-Gulland EJ
    PLoS One; 2014; 9(12):e114037. PubMed ID: 25462165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated warming and emergent trends in fisheries biomass yields of the world's large marine ecosystems.
    Sherman K; Belkin IM; Friedland KD; O'Reilly J; Hyde K
    Ambio; 2009 Jun; 38(4):215-24. PubMed ID: 19739556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential predictability of skipjack tuna (Katsuwonus pelamis) catches in the Western Central Pacific.
    Kim J; Na H; Park YG; Kim YH
    Sci Rep; 2020 Feb; 10(1):3193. PubMed ID: 32081958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative influence of ocean conditions on yellowfin and Atlantic bluefin tuna catch from longlines in the Gulf of Mexico.
    Teo SL; Block BA
    PLoS One; 2010 May; 5(5):e10756. PubMed ID: 20526356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skipjack tuna as a bioindicator of contamination by perfluorinated compounds in the oceans.
    Hart K; Kannan K; Tao L; Takahashi S; Tanabe S
    Sci Total Environ; 2008 Sep; 403(1-3):215-21. PubMed ID: 18619650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuna longline fishing around West and Central Pacific seamounts.
    Morato T; Hoyle SD; Allain V; Nicol SJ
    PLoS One; 2010 Dec; 5(12):e14453. PubMed ID: 21206913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-Scale Examination of Spatio-Temporal Patterns of Drifting Fish Aggregating Devices (dFADs) from Tropical Tuna Fisheries of the Indian and Atlantic Oceans.
    Maufroy A; Chassot E; Joo R; Kaplan DM
    PLoS One; 2015; 10(5):e0128023. PubMed ID: 26010151
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Guillou AM; Bodin N; Chassot E; Duparc A; Fily T; Sabarros PS; Depetris M; Amandè MJ; Lucas J; Augustin E; Diaha NC; Floch L; Barde J; Pascual-Alayón PJ; Báez JC; Cauquil P; Briand K; Lebranchu J
    Biodivers Data J; 2022; 10():e85938. PubMed ID: 36761613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large benefits to marine fisheries of meeting the 1.5°C global warming target.
    Cheung WW; Reygondeau G; Frölicher TL
    Science; 2016 Dec; 354(6319):1591-1594. PubMed ID: 28008069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bycatch in the Maldivian pole-and-line tuna fishery.
    Miller KI; Nadheeh I; Jauharee AR; Anderson RC; Adam MS
    PLoS One; 2017; 12(5):e0177391. PubMed ID: 28542258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depressed resilience of bluefin tuna in the western atlantic and age truncation.
    Secor DH; Rooker JR; Gahagan BI; Siskey MR; Wingate RW
    Conserv Biol; 2015 Apr; 29(2):400-8. PubMed ID: 25354426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trends in tuna carbon isotopes suggest global changes in pelagic phytoplankton communities.
    Lorrain A; Pethybridge H; Cassar N; Receveur A; Allain V; Bodin N; Bopp L; Choy CA; Duffy L; Fry B; Goñi N; Graham BS; Hobday AJ; Logan JM; Ménard F; Menkes CE; Olson RJ; Pagendam DE; Point D; Revill AT; Somes CJ; Young JW
    Glob Chang Biol; 2020 Feb; 26(2):458-470. PubMed ID: 31578765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early onset of industrial-era warming across the oceans and continents.
    Abram NJ; McGregor HV; Tierney JE; Evans MN; McKay NP; Kaufman DS;
    Nature; 2016 Aug; 536(7617):411-8. PubMed ID: 27558063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation process of drifting fish aggregating devices (DFADs) in the Western Indian Ocean: Who arrives first, tuna or non-tuna species?
    Orue B; Lopez J; Moreno G; Santiago J; Soto M; Murua H
    PLoS One; 2019; 14(1):e0210435. PubMed ID: 30645612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomass changes and trophic amplification of plankton in a warmer ocean.
    Chust G; Allen JI; Bopp L; Schrum C; Holt J; Tsiaras K; Zavatarelli M; Chifflet M; Cannaby H; Dadou I; Daewel U; Wakelin SL; Machu E; Pushpadas D; Butenschon M; Artioli Y; Petihakis G; Smith C; Garçon V; Goubanova K; Le Vu B; Fach BA; Salihoglu B; Clementi E; Irigoien X
    Glob Chang Biol; 2014 Jul; 20(7):2124-39. PubMed ID: 24604761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connectivity and population structure of albacore tuna across southeast Atlantic and southwest Indian Oceans inferred from multidisciplinary methodology.
    Nikolic N; Montes I; Lalire M; Puech A; Bodin N; Arnaud-Haond S; Kerwath S; Corse E; Gaspar P; Hollanda S; Bourjea J; West W; Bonhommeau S
    Sci Rep; 2020 Sep; 10(1):15657. PubMed ID: 32973260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.