These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 28591599)
1. DNA Internal Motion Likely Accelerates Protein Target Search in a Packed Nucleoid. Chow E; Skolnick J Biophys J; 2017 Jun; 112(11):2261-2270. PubMed ID: 28591599 [TBL] [Abstract][Full Text] [Related]
2. Tethered particle motion reveals that LacI·DNA loops coexist with a competitor-resistant but apparently unlooped conformation. Revalee JD; Blab GA; Wilson HD; Kahn JD; Meiners JC Biophys J; 2014 Feb; 106(3):705-15. PubMed ID: 24507611 [TBL] [Abstract][Full Text] [Related]
3. Proteins mediating DNA loops effectively block transcription. Vörös Z; Yan Y; Kovari DT; Finzi L; Dunlap D Protein Sci; 2017 Jul; 26(7):1427-1438. PubMed ID: 28295806 [TBL] [Abstract][Full Text] [Related]
4. Direct observation of a 91 bp LacI-mediated, negatively supercoiled DNA loop by atomic force microscope. Fulcrand G; Chapagain P; Dunlap D; Leng F FEBS Lett; 2016 Mar; 590(5):613-8. PubMed ID: 26878689 [TBL] [Abstract][Full Text] [Related]
5. DNA recognition process of the lactose repressor protein studied via metadynamics and umbrella sampling simulations. Furini S; Domene C J Phys Chem B; 2014 Nov; 118(46):13059-65. PubMed ID: 25341013 [TBL] [Abstract][Full Text] [Related]
6. Structure-guided approach to site-specific fluorophore labeling of the lac repressor LacI. Kipper K; Eremina N; Marklund E; Tubasum S; Mao G; Lehmann LC; Elf J; Deindl S PLoS One; 2018; 13(6):e0198416. PubMed ID: 29856839 [TBL] [Abstract][Full Text] [Related]
7. LacI-DNA-IPTG loops: equilibria among conformations by single-molecule FRET. Goodson KA; Wang Z; Haeusler AR; Kahn JD; English DS J Phys Chem B; 2013 Apr; 117(16):4713-22. PubMed ID: 23406418 [TBL] [Abstract][Full Text] [Related]
8. The Hinge Region Strengthens the Nonspecific Interaction between Lac-Repressor and DNA: A Computer Simulation Study. Sun L; Tabaka M; Hou S; Li L; Burdzy K; Aksimentiev A; Maffeo C; Zhang X; Holyst R PLoS One; 2016; 11(3):e0152002. PubMed ID: 27008630 [TBL] [Abstract][Full Text] [Related]
9. Gene location and DNA density determine transcription factor distributions in Escherichia coli. Kuhlman TE; Cox EC Mol Syst Biol; 2012; 8():610. PubMed ID: 22968444 [TBL] [Abstract][Full Text] [Related]
10. DNA modeling reveals an extended lac repressor conformation in classic in vitro binding assays. Hirsh AD; Lillian TD; Lionberger TA; Perkins NC Biophys J; 2011 Aug; 101(3):718-26. PubMed ID: 21806940 [TBL] [Abstract][Full Text] [Related]
11. Biochemistry. Completing the view of transcriptional regulation. von Hippel PH Science; 2004 Jul; 305(5682):350-2. PubMed ID: 15256661 [No Abstract] [Full Text] [Related]
12. Monitoring DNA binding to Escherichia coli lactose repressor using quartz crystal microbalance with dissipation. Xu J; Liu KW; Matthews KS; Biswal SL Langmuir; 2011 Apr; 27(8):4900-5. PubMed ID: 21410208 [TBL] [Abstract][Full Text] [Related]
13. Wrapped-around models for the lac operon complex. La Penna G; Perico A Biophys J; 2010 Jun; 98(12):2964-73. PubMed ID: 20550909 [TBL] [Abstract][Full Text] [Related]
14. Single molecule measurements of repressor protein 1D diffusion on DNA. Wang YM; Austin RH; Cox EC Phys Rev Lett; 2006 Jul; 97(4):048302. PubMed ID: 16907618 [TBL] [Abstract][Full Text] [Related]
15. Tetramer opening in LacI-mediated DNA looping. Rutkauskas D; Zhan H; Matthews KS; Pavone FS; Vanzi F Proc Natl Acad Sci U S A; 2009 Sep; 106(39):16627-32. PubMed ID: 19805348 [TBL] [Abstract][Full Text] [Related]
16. Tracking Low-Copy Transcription Factors in Living Bacteria: The Case of the lac Repressor. Garza de Leon F; Sellars L; Stracy M; Busby SJW; Kapanidis AN Biophys J; 2017 Apr; 112(7):1316-1327. PubMed ID: 28402875 [TBL] [Abstract][Full Text] [Related]
17. Simulated pressure changes in LacI suggest a link between hydration and functional conformational changes. Kariyawasam NL; Ploetz EA; Swint-Kruse L; Smith PE Biophys Chem; 2024 Jan; 304():107126. PubMed ID: 37924711 [TBL] [Abstract][Full Text] [Related]
18. Sliding of a single lac repressor protein along DNA is tuned by DNA sequence and molecular switching. Tempestini A; Monico C; Gardini L; Vanzi F; Pavone FS; Capitanio M Nucleic Acids Res; 2018 Jun; 46(10):5001-5011. PubMed ID: 29584872 [TBL] [Abstract][Full Text] [Related]
19. Method for the analysis of contribution of sliding and hopping to a facilitated diffusion of DNA-binding protein: Application to in vivo data. Tabaka M; Burdzy K; Hołyst R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022721. PubMed ID: 26382446 [TBL] [Abstract][Full Text] [Related]
20. DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli. Fulcrand G; Dages S; Zhi X; Chapagain P; Gerstman BS; Dunlap D; Leng F Sci Rep; 2016 Jan; 6():19243. PubMed ID: 26763930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]