BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28591605)

  • 1. Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives.
    Rokitskaya TI; Nazarov PA; Golovin AV; Antonenko YN
    Biophys J; 2017 Jun; 112(11):2327-2335. PubMed ID: 28591605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map.
    Aksimentiev A; Schulten K
    Biophys J; 2005 Jun; 88(6):3745-61. PubMed ID: 15764651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore.
    Song L; Hobaugh MR; Shustak C; Cheley S; Bayley H; Gouaux JE
    Science; 1996 Dec; 274(5294):1859-66. PubMed ID: 8943190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-driven DNA translocations through a nanopore.
    Meller A; Nivon L; Branton D
    Phys Rev Lett; 2001 Apr; 86(15):3435-8. PubMed ID: 11327989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urea denaturation of alpha-hemolysin pore inserted in planar lipid bilayer detected by single nanopore recording: loss of structural asymmetry.
    Pastoriza-Gallego M; Oukhaled G; Mathé J; Thiebot B; Betton JM; Auvray L; Pelta J
    FEBS Lett; 2007 Jul; 581(18):3371-6. PubMed ID: 17601577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An intermediate in the assembly of a pore-forming protein trapped with a genetically-engineered switch.
    Walker B; Braha O; Cheley S; Bayley H
    Chem Biol; 1995 Feb; 2(2):99-105. PubMed ID: 9383410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of peptides with a protein pore.
    Movileanu L; Schmittschmitt JP; Scholtz JM; Bayley H
    Biophys J; 2005 Aug; 89(2):1030-45. PubMed ID: 15923222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5- and 4'-Hydroxylated flavonoids affect voltage gating of single alpha-hemolysin pore.
    Ostroumova OS; Efimova SS; Schagina LV
    Biochim Biophys Acta; 2011 Aug; 1808(8):2051-8. PubMed ID: 21527242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of the noncovalent molecular adapter, beta-cyclodextrin, with the staphylococcal alpha-hemolysin pore.
    Gu LQ; Bayley H
    Biophys J; 2000 Oct; 79(4):1967-75. PubMed ID: 11023901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling a single protein in a nanopore through electrostatic traps.
    Mohammad MM; Prakash S; Matouschek A; Movileanu L
    J Am Chem Soc; 2008 Mar; 130(12):4081-8. PubMed ID: 18321107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical Signal Reporter, Pore-Forming Protein, for Rapid, Miniaturized, and Universal Identification of Microorganisms.
    Wan Y; Song F; Wang G; Liu H; An M; Wang A; Wu X; Ma C; Wang N
    Anal Chem; 2018 Aug; 90(16):9853-9858. PubMed ID: 30024735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein nanopore-based, single-molecule exploration of copper binding to an antimicrobial-derived, histidine-containing chimera peptide.
    Mereuta L; Schiopu I; Asandei A; Park Y; Hahm KS; Luchian T
    Langmuir; 2012 Dec; 28(49):17079-91. PubMed ID: 23140333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field-dependent effect of crown ether (18-crown-6) on ionic conductance of alpha-hemolysin channels.
    Bezrukov SM; Krasilnikov OV; Yuldasheva LN; Berezhkovskii AM; Rodrigues CG
    Biophys J; 2004 Nov; 87(5):3162-71. PubMed ID: 15507690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled alpha-hemolysin pores in an S-layer-supported lipid bilayer.
    Schuster B; Pum D; Braha O; Bayley H; Sleytr UB
    Biochim Biophys Acta; 1998 Mar; 1370(2):280-8. PubMed ID: 9545583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prolonged residence time of a noncovalent molecular adapter, beta-cyclodextrin, within the lumen of mutant alpha-hemolysin pores.
    Gu LQ; Cheley S; Bayley H
    J Gen Physiol; 2001 Nov; 118(5):481-94. PubMed ID: 11696607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein electrostriction: a possibility of elastic deformation of the alpha-hemolysin channel by the applied field.
    Krasilnikov OV; Merzlyak PG; Yuldasheva LN; Capistrano MF
    Eur Biophys J; 2005 Nov; 34(8):997-1006. PubMed ID: 16021445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photolabeling of a pore-forming toxin with the hydrophobic probe 2-[3H]diazofluorene. Identification of membrane-inserted segments of Staphylococcus aureus alpha-toxin.
    Lala AK; Raja SM
    J Biol Chem; 1995 May; 270(19):11348-57. PubMed ID: 7744772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forming an alpha-hemolysin nanopore for single-molecule analysis.
    Jetha NN; Wiggin M; Marziali A
    Methods Mol Biol; 2009; 544():113-27. PubMed ID: 19488697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of single-molecule kinetics mediated by weak hydrogen bonds within a biological nanopore.
    Asandei A; Apetrei A; Park Y; Hahm KS; Luchian T
    Langmuir; 2011 Jan; 27(1):19-24. PubMed ID: 21128603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible adsorption and nonreversible insertion of Escherichia coli alpha-hemolysin into lipid bilayers.
    Bakás L; Ostolaza H; Vaz WL; Goñi FM
    Biophys J; 1996 Oct; 71(4):1869-76. PubMed ID: 8889162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.