BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28591615)

  • 1. Transient Thresholding: A Mechanism Enabling Noncooperative Transcriptional Circuitry to Form a Switch.
    Aull KH; Tanner EJ; Thomson M; Weinberger LS
    Biophys J; 2017 Jun; 112(11):2428-2438. PubMed ID: 28591615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlatching positive feedback enables robust bimodality by decoupling expression noise from the mean.
    Razooky BS; Cao Y; Hansen MMK; Perelson AS; Simpson ML; Weinberger LS
    PLoS Biol; 2017 Oct; 15(10):e2000841. PubMed ID: 29045398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient-mediated fate determination in a transcriptional circuit of HIV.
    Weinberger LS; Dar RD; Simpson ML
    Nat Genet; 2008 Apr; 40(4):466-70. PubMed ID: 18344999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the architecture of the HIV-1 Tat circuit: A decision-making circuit that lacks bistability and exploits stochastic noise.
    Razooky BS; Weinberger LS
    Methods; 2011 Jan; 53(1):68-77. PubMed ID: 21167940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Molecule Threshold of HIV Fate Decision.
    Wollman R
    Biophys J; 2017 Jun; 112(11):2247-2248. PubMed ID: 28591597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Stronger Transcription Regulatory Circuit of HIV-1C Drives the Rapid Establishment of Latency with Implications for the Direct Involvement of Tat.
    Chakraborty S; Kabi M; Ranga U
    J Virol; 2020 Sep; 94(19):. PubMed ID: 32669338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semen Exosomes Promote Transcriptional Silencing of HIV-1 by Disrupting NF-κB/Sp1/Tat Circuitry.
    Welch JL; Kaddour H; Schlievert PM; Stapleton JT; Okeoma CM
    J Virol; 2018 Nov; 92(21):. PubMed ID: 30111566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate-Regulating Circuits in Viruses: From Discovery to New Therapy Targets.
    Pai A; Weinberger LS
    Annu Rev Virol; 2017 Sep; 4(1):469-490. PubMed ID: 28800289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional bursting from the HIV-1 promoter is a significant source of stochastic noise in HIV-1 gene expression.
    Singh A; Razooky B; Cox CD; Simpson ML; Weinberger LS
    Biophys J; 2010 Apr; 98(8):L32-4. PubMed ID: 20409455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay between viral Tat protein and c-Jun transcription factor in controlling LTR promoter activity in different human immunodeficiency virus type I subtypes.
    van der Sluis RM; Derking R; Breidel S; Speijer D; Berkhout B; Jeeninga RE
    J Gen Virol; 2014 Apr; 95(Pt 4):968-979. PubMed ID: 24447950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical model of the Tat-Rev regulation of HIV-1 replication in an activated cell predicts the existence of oscillatory dynamics in the synthesis of viral components.
    Likhoshvai VA; Khlebodarova TM; Bazhan SI; Gainova IA; Chereshnev VA; Bocharov GA
    BMC Genomics; 2014; 15 Suppl 12(Suppl 12):S1. PubMed ID: 25564443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct promoter activation mechanisms modulate noise-driven HIV gene expression.
    Chavali AK; Wong VC; Miller-Jensen K
    Sci Rep; 2015 Dec; 5():17661. PubMed ID: 26666681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic control of HIV latency and transactivation by the Tat gene circuit.
    Cao Y; Lei X; Ribeiro RM; Perelson AS; Liang J
    Proc Natl Acad Sci U S A; 2018 Dec; 115(49):12453-12458. PubMed ID: 30455316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shutdown of HIV-1 Transcription in T Cells by Nullbasic, a Mutant Tat Protein.
    Jin H; Li D; Sivakumaran H; Lor M; Rustanti L; Cloonan N; Wani S; Harrich D
    mBio; 2016 Jul; 7(4):. PubMed ID: 27381288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic silencing of human immunodeficiency virus (HIV) transcription by formation of restrictive chromatin structures at the viral long terminal repeat drives the progressive entry of HIV into latency.
    Pearson R; Kim YK; Hokello J; Lassen K; Friedman J; Tyagi M; Karn J
    J Virol; 2008 Dec; 82(24):12291-303. PubMed ID: 18829756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication.
    McAllister JJ; Phillips D; Millhouse S; Conner J; Hogan T; Ross HL; Wigdahl B
    Virology; 2000 Sep; 274(2):262-77. PubMed ID: 10964770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tackling Tat.
    Karn J
    J Mol Biol; 1999 Oct; 293(2):235-54. PubMed ID: 10550206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Post-Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabilization.
    Hansen MMK; Wen WY; Ingerman E; Razooky BS; Thompson CE; Dar RD; Chin CW; Simpson ML; Weinberger LS
    Cell; 2018 Jun; 173(7):1609-1621.e15. PubMed ID: 29754821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional differences between the long terminal repeat transcriptional promoters of human immunodeficiency virus type 1 subtypes A through G.
    Jeeninga RE; Hoogenkamp M; Armand-Ugon M; de Baar M; Verhoef K; Berkhout B
    J Virol; 2000 Apr; 74(8):3740-51. PubMed ID: 10729149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of human immunodeficiency virus 1 replication by interferon regulatory factors.
    Sgarbanti M; Borsetti A; Moscufo N; Bellocchi MC; Ridolfi B; Nappi F; Marsili G; Marziali G; Coccia EM; Ensoli B; Battistini A
    J Exp Med; 2002 May; 195(10):1359-70. PubMed ID: 12021315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.