BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28591615)

  • 21. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity.
    Weinberger LS; Burnett JC; Toettcher JE; Arkin AP; Schaffer DV
    Cell; 2005 Jul; 122(2):169-82. PubMed ID: 16051143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human immunodeficiency virus type 1 genome activation induced by human T-cell leukemia virus type 1 Tax protein is through cooperation of NF-kappaB and Tat.
    Cheng H; Tarnok J; Parks WP
    J Virol; 1998 Aug; 72(8):6911-6. PubMed ID: 9658145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HIV-1 positive feedback and lytic fate.
    Nachman I; Ramanathan S
    Nat Genet; 2008 Apr; 40(4):382-3. PubMed ID: 18368125
    [No Abstract]   [Full Text] [Related]  

  • 24. Transdominant mutants of I kappa B alpha block Tat-tumor necrosis factor synergistic activation of human immunodeficiency virus type 1 gene expression and virus multiplication.
    Beauparlant P; Kwon H; Clarke M; Lin R; Sonenberg N; Wainberg M; Hiscott J
    J Virol; 1996 Sep; 70(9):5777-85. PubMed ID: 8709193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Tat-induced auto-up-regulatory loop for superactivation of the human immunodeficiency virus type 1 promoter.
    Biswas DK; Salas TR; Wang F; Ahlers CM; Dezube BJ; Pardee AB
    J Virol; 1995 Dec; 69(12):7437-44. PubMed ID: 7494249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter.
    El Kharroubi A; Piras G; Zensen R; Martin MA
    Mol Cell Biol; 1998 May; 18(5):2535-44. PubMed ID: 9566873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential role of long terminal repeat control elements for the regulation of basal and Tat-mediated transcription of the human immunodeficiency virus in stimulated and unstimulated primary human macrophages.
    Moses AV; Ibanez C; Gaynor R; Ghazal P; Nelson JA
    J Virol; 1994 Jan; 68(1):298-307. PubMed ID: 8254741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of the tat and nef gene products of human immunodeficiency virus type 1 (HIV-1) on transcription controlled by the HIV-1 long terminal repeat and on cell growth in macrophages.
    Murphy KM; Sweet MJ; Ross IL; Hume DA
    J Virol; 1993 Dec; 67(12):6956-64. PubMed ID: 8230418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hardwired HIV latency program.
    Razooky BS; Pai A; Aull K; Rouzine IM; Weinberger LS
    Cell; 2015 Feb; 160(5):990-1001. PubMed ID: 25723172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An HIV feedback resistor: auto-regulatory circuit deactivator and noise buffer.
    Weinberger LS; Shenk T
    PLoS Biol; 2007 Jan; 5(1):e9. PubMed ID: 17194214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional interaction between the HIV transactivator Tat and the transcriptional coactivator PC4 in T cells.
    Holloway AF; Occhiodoro F; Mittler G; Meisterernst M; Shannon MF
    J Biol Chem; 2000 Jul; 275(28):21668-77. PubMed ID: 10887206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter.
    Mahmoudi T; Parra M; Vries RG; Kauder SE; Verrijzer CP; Ott M; Verdin E
    J Biol Chem; 2006 Jul; 281(29):19960-8. PubMed ID: 16687403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short communication: a single step assay for rapid evaluation of inhibitors targeting HIV type 1 Tat-mediated long terminal repeat transactivation.
    Chande AG; Baba M; Mukhopadhyaya R
    AIDS Res Hum Retroviruses; 2012 Aug; 28(8):902-6. PubMed ID: 21878060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Molecular Basis for Human Immunodeficiency Virus Latency.
    Mbonye U; Karn J
    Annu Rev Virol; 2017 Sep; 4(1):261-285. PubMed ID: 28715973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tat inhibition by didehydro-Cortistatin A promotes heterochromatin formation at the HIV-1 long terminal repeat.
    Li C; Mousseau G; Valente ST
    Epigenetics Chromatin; 2019 Apr; 12(1):23. PubMed ID: 30992052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Tat/P-TEFb Protein-Protein Interaction Determining Transcriptional Activation of HIV.
    Asamitsu K; Okamoto T
    Curr Pharm Des; 2017; 23(28):4091-4097. PubMed ID: 28699519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HIV Nef enhances Tat-mediated viral transcription through a hnRNP-K-nucleated signaling complex.
    Wolf D; Witte V; Clark P; Blume K; Lichtenheld MG; Baur AS
    Cell Host Microbe; 2008 Oct; 4(4):398-408. PubMed ID: 18854243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Latent HIV-1 TAR Regulates 7SK-responsive P-TEFb Target Genes and Targets Cellular Immune Responses in the Absence of Tat.
    Eilebrecht S; Benecke BJ; Benecke AG
    Genomics Proteomics Bioinformatics; 2017 Oct; 15(5):313-323. PubMed ID: 29037489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential regulation of HIV-1 clade-specific B, C, and E long terminal repeats by NF-kappaB and the Tat transactivator.
    Roof P; Ricci M; Genin P; Montano MA; Essex M; Wainberg MA; Gatignol A; Hiscott J
    Virology; 2002 Apr; 296(1):77-83. PubMed ID: 12036319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HIV trans-activation and transcription control mechanisms.
    Jones KA
    New Biol; 1989 Nov; 1(2):127-35. PubMed ID: 2562218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.