These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28591615)

  • 61. Synergy between HIV-1 Tat and adenovirus E1A is principally due to stabilization of transcriptional elongation.
    Laspia MF; Rice AP; Mathews MB
    Genes Dev; 1990 Dec; 4(12B):2397-408. PubMed ID: 2149119
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Identification of limiting steps for efficient trans-activation of HIV-1 promoter by Tat in Saccharomyces cerevisiae.
    Daviet L; Bois F; Battisti PL; Gatignol A
    J Biol Chem; 1998 Oct; 273(43):28219-28. PubMed ID: 9774443
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An in vitro transcription system that recapitulates equine infectious anemia virus tat-mediated inhibition of human immunodeficiency virus type 1 Tat activity demonstrates a role for positive transcription elongation factor b and associated proteins in the mechanism of Tat activation.
    Suñé C; Goldstrohm AC; Peng J; Price DH; Garcia-Blanco MA
    Virology; 2000 Sep; 274(2):356-66. PubMed ID: 10964778
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Resistance to the Tat Inhibitor Didehydro-Cortistatin A Is Mediated by Heightened Basal HIV-1 Transcription.
    Mousseau G; Aneja R; Clementz MA; Mediouni S; Lima NS; Haregot A; Kessing CF; Jablonski JA; Thenin-Houssier S; Nagarsheth N; Trautmann L; Valente ST
    mBio; 2019 Jul; 10(4):. PubMed ID: 31266880
    [TBL] [Abstract][Full Text] [Related]  

  • 65. PJA2 ubiquitinates the HIV-1 Tat protein with atypical chain linkages to activate viral transcription.
    Faust TB; Li Y; Jang GM; Johnson JR; Yang S; Weiss A; Krogan NJ; Frankel AD
    Sci Rep; 2017 Mar; 7():45394. PubMed ID: 28345603
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Regulation of human immunodeficiency virus type 1 gene expression by clade-specific Tat proteins.
    Desfosses Y; Solis M; Sun Q; Grandvaux N; Van Lint C; Burny A; Gatignol A; Wainberg MA; Lin R; Hiscott J
    J Virol; 2005 Jul; 79(14):9180-91. PubMed ID: 15994812
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Noise can induce bimodality in positive transcriptional feedback loops without bistability.
    To TL; Maheshri N
    Science; 2010 Feb; 327(5969):1142-5. PubMed ID: 20185727
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A transdominant tat mutant that inhibits tat-induced gene expression from the human immunodeficiency virus long terminal repeat.
    Pearson L; Garcia J; Wu F; Modesti N; Nelson J; Gaynor R
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5079-83. PubMed ID: 2195547
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Inhibition of human immunodeficiency virus type 1 replication in vitro by a novel combination of anti-Tat single-chain intrabodies and NF-kappa B antagonists.
    Mhashilkar AM; Biswas DK; LaVecchio J; Pardee AB; Marasco WA
    J Virol; 1997 Sep; 71(9):6486-94. PubMed ID: 9261367
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A lentiviral vector that activates latent human immunodeficiency virus-1 proviruses by the overexpression of tat and that kills the infected cells.
    Macías D; Oya R; Saniger L; Martín F; Luque F
    Hum Gene Ther; 2009 Nov; 20(11):1259-68. PubMed ID: 19604078
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mutation of the major 5' splice site renders a CMV-driven HIV-1 proviral clone Tat-dependent: connections between transcription and splicing.
    Bohne J; Kräusslich HG
    FEBS Lett; 2004 Apr; 563(1-3):113-8. PubMed ID: 15063733
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stability and multiattractor dynamics of a toggle switch based on a two-stage model of stochastic gene expression.
    Strasser M; Theis FJ; Marr C
    Biophys J; 2012 Jan; 102(1):19-29. PubMed ID: 22225794
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Origins of binary gene expression in post-transcriptional regulation by microRNAs.
    Bose I; Ghosh S
    Eur Phys J E Soft Matter; 2012 Oct; 35(10):102. PubMed ID: 23064825
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transcription factor competition facilitates self-sustained oscillations in single gene genetic circuits.
    Landman J; Verduyn Lunel SM; Kegel WK
    PLoS Comput Biol; 2023 Sep; 19(9):e1011525. PubMed ID: 37773967
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Post-Transcriptional Noise Control.
    Hansen MMK; Weinberger LS
    Bioessays; 2019 Jul; 41(7):e1900044. PubMed ID: 31222776
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Monomeric bistability and the role of autoloops in gene regulation.
    Widder S; Macía J; Solé R
    PLoS One; 2009; 4(4):e5399. PubMed ID: 19404388
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Speed, sensitivity, and bistability in auto-activating signaling circuits.
    Hermsen R; Erickson DW; Hwa T
    PLoS Comput Biol; 2011 Nov; 7(11):e1002265. PubMed ID: 22125482
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A minimal fate-selection switch.
    Weinberger LS
    Curr Opin Cell Biol; 2015 Dec; 37():111-8. PubMed ID: 26611210
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Operating principles of circular toggle polygons.
    Hati S; Duddu AS; Jolly MK
    Phys Biol; 2021 May; 18(4):. PubMed ID: 33730700
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A density-dependent switch drives stochastic clustering and polarization of signaling molecules.
    Jilkine A; Angenent SB; Wu LF; Altschuler SJ
    PLoS Comput Biol; 2011 Nov; 7(11):e1002271. PubMed ID: 22102805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.