BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28591796)

  • 1. Histamine Enhances Theta-Coupled Spiking and Gamma Oscillations in the Medial Entorhinal Cortex Consistent With Successful Spatial Recognition.
    Chen Q; Luo F; Yue F; Xia J; Xiao Q; Liao X; Jiang J; Zhang J; Hu B; Gao D; He C; Hu Z
    Cereb Cortex; 2018 Jul; 28(7):2439-2457. PubMed ID: 28591796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superficial Layer-Specific Histaminergic Modulation of Medial Entorhinal Cortex Required for Spatial Learning.
    He C; Luo F; Chen X; Chen F; Li C; Ren S; Qiao Q; Zhang J; de Lecea L; Gao D; Hu Z
    Cereb Cortex; 2016 Apr; 26(4):1590-1608. PubMed ID: 25595181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gamma oscillations induced by kainate receptor activation in the entorhinal cortex in vitro.
    Cunningham MO; Davies CH; Buhl EH; Kopell N; Whittington MA
    J Neurosci; 2003 Oct; 23(30):9761-9. PubMed ID: 14586003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histamine induces KCNQ channel-dependent gamma oscillations in rat hippocampus via activation of the H1 receptor.
    Andersson R; Galter D; Papadia D; Fisahn A
    Neuropharmacology; 2017 May; 118():13-25. PubMed ID: 28274820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation.
    Butler JL; Mendonça PR; Robinson HP; Paulsen O
    J Neurosci; 2016 Apr; 36(15):4155-69. PubMed ID: 27076416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gamma oscillations in the entorhinal cortex of the freely behaving rat.
    Chrobak JJ; Buzsáki G
    J Neurosci; 1998 Jan; 18(1):388-98. PubMed ID: 9412515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomical Organization and Spatiotemporal Firing Patterns of Layer 3 Neurons in the Rat Medial Entorhinal Cortex.
    Tang Q; Ebbesen CL; Sanguinetti-Scheck JI; Preston-Ferrer P; Gundlfinger A; Winterer J; Beed P; Ray S; Naumann R; Schmitz D; Brecht M; Burgalossi A
    J Neurosci; 2015 Sep; 35(36):12346-54. PubMed ID: 26354904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal rebound spiking, resonance frequency and theta cycle skipping may contribute to grid cell firing in medial entorhinal cortex.
    Hasselmo ME
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120523. PubMed ID: 24366135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning.
    Brandon MP; Bogaard AR; Libby CP; Connerney MA; Gupta K; Hasselmo ME
    Science; 2011 Apr; 332(6029):595-9. PubMed ID: 21527714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interspike Intervals Reveal Functionally Distinct Cell Populations in the Medial Entorhinal Cortex.
    Latuske P; Toader O; Allen K
    J Neurosci; 2015 Aug; 35(31):10963-76. PubMed ID: 26245960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic suppression of excitatory synaptic responses in layer II of the medial entorhinal cortex.
    Hamam BN; Sinai M; Poirier G; Chapman CA
    Hippocampus; 2007; 17(2):103-13. PubMed ID: 17146776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spatial periodicity of grid cells is not sustained during reduced theta oscillations.
    Koenig J; Linder AN; Leutgeb JK; Leutgeb S
    Science; 2011 Apr; 332(6029):592-5. PubMed ID: 21527713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grid-like hexadirectional modulation of human entorhinal theta oscillations.
    Maidenbaum S; Miller J; Stein JM; Jacobs J
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10798-10803. PubMed ID: 30282738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholinergic blockade reduces theta-gamma phase amplitude coupling and speed modulation of theta frequency consistent with behavioral effects on encoding.
    Newman EL; Gillet SN; Climer JR; Hasselmo ME
    J Neurosci; 2013 Dec; 33(50):19635-46. PubMed ID: 24336727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medial entorhinal cortex and medial septum contribute to self-motion-based linear distance estimation.
    Jacob PY; Gordillo-Salas M; Facchini J; Poucet B; Save E; Sargolini F
    Brain Struct Funct; 2017 Aug; 222(6):2727-2742. PubMed ID: 28161726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks.
    Solanka L; van Rossum MC; Nolan MF
    Elife; 2015 Jul; 4():. PubMed ID: 26146940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyramidal and stellate cell specificity of grid and border representations in layer 2 of medial entorhinal cortex.
    Tang Q; Burgalossi A; Ebbesen CL; Ray S; Naumann R; Schmidt H; Spicher D; Brecht M
    Neuron; 2014 Dec; 84(6):1191-7. PubMed ID: 25482025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-amplitude coupled persistent theta and gamma oscillations in rat primary motor cortex in vitro.
    Johnson NW; Özkan M; Burgess AP; Prokic EJ; Wafford KA; O'Neill MJ; Greenhill SD; Stanford IM; Woodhall GL
    Neuropharmacology; 2017 Jun; 119():141-156. PubMed ID: 28400257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss.
    Scharfman HE; Goodman JH; Du F; Schwarcz R
    J Neurophysiol; 1998 Dec; 80(6):3031-46. PubMed ID: 9862904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grid cells without theta oscillations in the entorhinal cortex of bats.
    Yartsev MM; Witter MP; Ulanovsky N
    Nature; 2011 Nov; 479(7371):103-7. PubMed ID: 22051680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.