These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28591796)

  • 41. Grid cells correlation structure suggests organized feedforward projections into superficial layers of the medial entorhinal cortex.
    Tocker G; Barak O; Derdikman D
    Hippocampus; 2015 Dec; 25(12):1599-613. PubMed ID: 26105192
    [TBL] [Abstract][Full Text] [Related]  

  • 42. GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations.
    Cutsuridis V; Hasselmo M
    Hippocampus; 2012 Jul; 22(7):1597-621. PubMed ID: 22252986
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neurophysiological signatures of temporal coordination between retrosplenial cortex and the hippocampal formation.
    Alexander AS; Rangel LM; Tingley D; Nitz DA
    Behav Neurosci; 2018 Oct; 132(5):453-468. PubMed ID: 30070554
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Subthreshold membrane potential oscillations in neurons of deep layers of the entorhinal cortex.
    Schmitz D; Gloveli T; Behr J; Dugladze T; Heinemann U
    Neuroscience; 1998 Aug; 85(4):999-1004. PubMed ID: 9681940
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theta resonance and synaptic modulation scale activity patterns in the medial entorhinal cortex stellate cells.
    Katyare N; Sikdar SK
    Ann N Y Acad Sci; 2020 Oct; 1478(1):92-112. PubMed ID: 32794193
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Frequency selectivity of layer II stellate cells in the medial entorhinal cortex.
    Haas JS; White JA
    J Neurophysiol; 2002 Nov; 88(5):2422-9. PubMed ID: 12424283
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbachol induces fast oscillations in the medial but not in the lateral entorhinal cortex of the isolated guinea pig brain.
    van Der Linden S; Panzica F; de Curtis M
    J Neurophysiol; 1999 Nov; 82(5):2441-50. PubMed ID: 10561417
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Local generation of theta-frequency EEG activity in the parasubiculum.
    Glasgow SD; Chapman CA
    J Neurophysiol; 2007 Jun; 97(6):3868-79. PubMed ID: 17392407
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics.
    Acker CD; Kopell N; White JA
    J Comput Neurosci; 2003; 15(1):71-90. PubMed ID: 12843696
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simulation of oscillatory dynamics induced by an approximation of grid cell output.
    Traub RD; Whittington MA; Cunningham MO
    Rev Neurosci; 2023 Jul; 34(5):517-532. PubMed ID: 36326795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparison of the firing properties of putative excitatory and inhibitory neurons from CA1 and the entorhinal cortex.
    Frank LM; Brown EN; Wilson MA
    J Neurophysiol; 2001 Oct; 86(4):2029-40. PubMed ID: 11600659
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function.
    Shay CF; Ferrante M; Chapman GW; Hasselmo ME
    Neurobiol Learn Mem; 2016 Mar; 129():83-98. PubMed ID: 26385258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Entorhinal theta phase precession sculpts dentate gyrus place fields.
    Molter C; Yamaguchi Y
    Hippocampus; 2008; 18(9):919-30. PubMed ID: 18528856
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Response dynamics of entorhinal cortex in awake, anesthetized, and bulbotomized rats.
    Ahrens KF; Freeman WJ
    Brain Res; 2001 Aug; 911(2):193-202. PubMed ID: 11511390
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microcircuits of functionally identified neurons in the rat medial entorhinal cortex.
    Burgalossi A; Herfst L; von Heimendahl M; Förste H; Haskic K; Schmidt M; Brecht M
    Neuron; 2011 May; 70(4):773-86. PubMed ID: 21609831
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Linking cellular mechanisms to behavior: entorhinal persistent spiking and membrane potential oscillations may underlie path integration, grid cell firing, and episodic memory.
    Hasselmo ME; Brandon MP
    Neural Plast; 2008; 2008():658323. PubMed ID: 18670635
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cholinergic receptor activation induces a relative facilitation of synaptic responses in the entorhinal cortex during theta- and gamma-frequency stimulation of parasubicular inputs.
    Sparks DW; Chapman CA
    Neuroscience; 2013 Jan; 230():72-85. PubMed ID: 23201257
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabotropic glutamate receptor, mGlu5, regulates hippocampal synaptic plasticity and is required for tetanisation-triggered changes in theta and gamma oscillations.
    Bikbaev A; Manahan-Vaughan D
    Neuropharmacology; 2017 Mar; 115():20-29. PubMed ID: 27395786
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Contribution of Ih to the relative facilitation of synaptic responses induced by carbachol in the entorhinal cortex during repetitive stimulation of the parasubiculum.
    Sparks DW; Chapman CA
    Neuroscience; 2014 Oct; 278():81-92. PubMed ID: 25130557
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dopamine D1/5 receptor modulation of firing rate and bidirectional theta burst firing in medial septal/vertical limb of diagonal band neurons in vivo.
    Fitch TE; Sahr RN; Eastwood BJ; Zhou FC; Yang CR
    J Neurophysiol; 2006 May; 95(5):2808-20. PubMed ID: 16452256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.