BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 28591844)

  • 1. New insights into a classic aptamer: binding sites, cooperativity and more sensitive adenosine detection.
    Zhang Z; Oni O; Liu J
    Nucleic Acids Res; 2017 Jul; 45(13):7593-7601. PubMed ID: 28591844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A selective adenosine sensor derived from a triplex DNA aptamer.
    Patel M; Dutta A; Huang H
    Anal Bioanal Chem; 2011 Jul; 400(9):3035-40. PubMed ID: 21547431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic analysis of cooperative ligand binding by the ATP-binding DNA aptamer indicates a population-shift binding mechanism.
    Slavkovic S; Zhu Y; Churcher ZR; Shoara AA; Johnson AE; Johnson PE
    Sci Rep; 2020 Nov; 10(1):18944. PubMed ID: 33144644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for Creating Structure-Switching Aptamers.
    Feagin TA; Maganzini N; Soh HT
    ACS Sens; 2018 Sep; 3(9):1611-1615. PubMed ID: 30156834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pushing Adenosine and ATP SELEX for DNA Aptamers with Nanomolar Affinity.
    Ding Y; Liu J
    J Am Chem Soc; 2023 Apr; 145(13):7540-7547. PubMed ID: 36947745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent aptasensors based on conformational adaptability of abasic site-containing aptamers in combination with abasic site-binding ligands.
    Xu Z; Sato Y; Nishizawa S; Teramae N
    Biosens Bioelectron; 2011 Aug; 26(12):4733-8. PubMed ID: 21719270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-locked aptamer probe mediated cascade amplification strategy for highly sensitive and selective detection of protein and small molecule.
    Li W; Jiang W; Wang L
    Anal Chim Acta; 2016 Oct; 940():1-7. PubMed ID: 27662754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of structure-switching in the design of aptamer biosensors.
    Lau PS; Li Y
    Adv Biochem Eng Biotechnol; 2014; 140():69-92. PubMed ID: 23851586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic cleavage and mass amplification strategy for small molecule detection using aptamer-based fluorescence polarization biosensor.
    Kang L; Yang B; Zhang X; Cui L; Meng H; Mei L; Wu C; Ren S; Tan W
    Anal Chim Acta; 2015 Jun; 879():91-6. PubMed ID: 26002482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive electrochemiluminescent biosensor for adenosine based on structure-switching of aptamer.
    Zhu X; Zhang Y; Yang W; Liu Q; Lin Z; Qiu B; Chen G
    Anal Chim Acta; 2011 Jan; 684(1-2):121-5. PubMed ID: 21167993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive detection of 25-HydroxyvitaminD
    Lee BH; Nguyen VT; Gu MB
    Biosens Bioelectron; 2017 Feb; 88():174-180. PubMed ID: 27520502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a thermal-stable structure-switching cocaine-binding aptamer.
    Shoara AA; Reinstein O; Borhani OA; Martin TR; Slavkovic S; Churcher ZR; Johnson PE
    Biochimie; 2018 Feb; 145():137-144. PubMed ID: 28838608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt-Toggled Capture Selection of Uric Acid Binding Aptamers.
    Liu Y; Liu J
    Chembiochem; 2023 Jan; 24(2):e202200564. PubMed ID: 36394510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved fluorescence biosensor for adenosine detection based on home-made europium complexes.
    Huang DW; Niu CG; Zeng GM; Ruan M
    Biosens Bioelectron; 2011 Nov; 29(1):178-83. PubMed ID: 21906929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen.
    Eissa S; Zourob M
    Biosens Bioelectron; 2017 May; 91():169-174. PubMed ID: 28006685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aptamer cocktails: enhancement of sensing signals compared to single use of aptamers for detection of bacteria.
    Kim YS; Chung J; Song MY; Jurng J; Kim BC
    Biosens Bioelectron; 2014 Apr; 54():195-8. PubMed ID: 24280049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capture-SELEX of DNA Aptamers for Sulforhodamine B and Fluorescein.
    Gu L; Zheng J; Zhang Y; Wang D; Liu J
    Chemistry; 2023 Dec; 29(72):e202302616. PubMed ID: 37793015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of aptamers for fluorescent detection of alpha-methylacyl-CoA racemase by single-bead SELEX.
    Yang DK; Chen LC; Lee MY; Hsu CH; Chen CS
    Biosens Bioelectron; 2014 Dec; 62():106-12. PubMed ID: 24994506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.
    Zhou Q; Lin Y; Lin Y; Wei Q; Chen G; Tang D
    Talanta; 2016; 146():23-8. PubMed ID: 26695229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.
    Stoltenburg R; Schubert T; Strehlitz B
    PLoS One; 2015; 10(7):e0134403. PubMed ID: 26221730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.