These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28592206)

  • 1. Molecular modeling and SPRi investigations of interleukin 6 (IL6) protein and DNA aptamers.
    Rhinehardt KL; Vance SA; Mohan RV; Sandros M; Srinivas G
    J Biomol Struct Dyn; 2018 Jun; 36(8):1934-1947. PubMed ID: 28592206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics Simulation Analysis of Anti-MUC1 Aptamer and Mucin 1 Peptide Binding.
    Rhinehardt KL; Srinivas G; Mohan RV
    J Phys Chem B; 2015 Jun; 119(22):6571-83. PubMed ID: 25963836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile characterization of aptamer kinetic and equilibrium binding properties using surface plasmon resonance.
    Chang AL; McKeague M; Smolke CD
    Methods Enzymol; 2014; 549():451-66. PubMed ID: 25432760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers.
    Tang Q; Su X; Loh KP
    J Colloid Interface Sci; 2007 Nov; 315(1):99-106. PubMed ID: 17689549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon resonance imaging (SPRi) for analysis of DNA aptamer:β-conglutin interactions.
    Jauset Rubio M; Svobodová M; Mairal T; O'Sullivan CK
    Methods; 2016 Mar; 97():20-6. PubMed ID: 26515644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RAID3--An interleukin-6 receptor-binding aptamer with post-selective modification-resistant affinity.
    Mittelberger F; Meyer C; Waetzig GH; Zacharias M; Valentini E; Svergun DI; Berg K; Lorenzen I; Grötzinger J; Rose-John S; Hahn U
    RNA Biol; 2015; 12(9):1043-53. PubMed ID: 26383776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance imaging for affinity analysis of aptamer-protein interactions with PDMS microfluidic chips.
    Wang Z; Wilkop T; Xu D; Dong Y; Ma G; Cheng Q
    Anal Bioanal Chem; 2007 Oct; 389(3):819-25. PubMed ID: 17673982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The intrinsic flexibility of the aptamer targeting the ribosomal protein S8 is a key factor for the molecular recognition.
    Autiero I; Ruvo M; Improta R; Vitagliano L
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1006-1016. PubMed ID: 29413905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of the induced-fit binding process of DNA aptamer and L-argininamide.
    Lin PH; Tsai CW; Wu JW; Ruaan RC; Chen WY
    Biotechnol J; 2012 Nov; 7(11):1367-75. PubMed ID: 22678933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPR evaluation of binding kinetics and affinity study of modified RNA aptamers towards small molecules.
    González-Fernández E; de-los-Santos-Álvarez N; Miranda-Ordieres AJ; Lobo-Castañón MJ
    Talanta; 2012 Sep; 99():767-73. PubMed ID: 22967622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations on the interface of nucleic acid aptamers and binding targets.
    Cai S; Yan J; Xiong H; Liu Y; Peng D; Liu Z
    Analyst; 2018 Nov; 143(22):5317-5338. PubMed ID: 30357118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Disruption of an Adenosine-Binding DNA Aptamer on Graphene: Implications for Aptasensor Design.
    Hughes ZE; Walsh TR
    ACS Sens; 2017 Nov; 2(11):1602-1611. PubMed ID: 29063764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of the binding mechanism between aptamers and thrombin by circular dichroism, surface plasmon resonance and isothermal titration calorimetry.
    Lin PH; Chen RH; Lee CH; Chang Y; Chen CS; Chen WY
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):552-8. PubMed ID: 21885262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifaceted analyses of the interactions between human heart type fatty acid binding protein and its specific aptamers.
    Kakoti A; Goswami P
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt A):3289-3299. PubMed ID: 27545084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosensors for RNA aptamers-protein interaction.
    Tombelli S; Minunni M; Mascini M
    Methods Mol Biol; 2008; 419():109-19. PubMed ID: 18369978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon-coupled directional emission based on a conformational-switching signaling aptamer.
    Xie TT; Liu Q; Cai WP; Chen Z; Li YQ
    Chem Commun (Camb); 2009 Jun; (22):3190-2. PubMed ID: 19587909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination terminal fixed region screening and high-throughput kinetic determination of aptamer for lipocalin-1 by surface plasmon resonance imaging.
    Jia W; Lu Z; Yang H; Li H; Xu D
    Anal Chim Acta; 2018 Dec; 1043():158-166. PubMed ID: 30392664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay.
    Win MN; Klein JS; Smolke CD
    Nucleic Acids Res; 2006; 34(19):5670-82. PubMed ID: 17038331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.
    Stoltenburg R; Schubert T; Strehlitz B
    PLoS One; 2015; 10(7):e0134403. PubMed ID: 26221730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplified surface plasmon resonance immunosensor for interferon-gamma based on a streptavidin-incorporated aptamer.
    Chang CC; Lin S; Lee CH; Chuang TL; Hsueh PR; Lai HC; Lin CW
    Biosens Bioelectron; 2012; 37(1):68-74. PubMed ID: 22626829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.