BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 28592226)

  • 1. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor.
    Liu Z; Li L; Li Z; Tian X
    Environ Technol; 2018 Jul; 39(14):1814-1822. PubMed ID: 28592226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage].
    Su Y; Wang J; Peng SC; Yue ZB; Chen TH; Jin J
    Huan Jing Ke Xue; 2010 Aug; 31(8):1858-63. PubMed ID: 21090305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of sulfate-reducing granular sludge in the SANI(®) process.
    Hao T; Wei L; Lu H; Chui H; Mackey HR; van Loosdrecht MC; Chen G
    Water Res; 2013 Dec; 47(19):7042-52. PubMed ID: 24200003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High rate of biological removal of sulfate, organic matter, and metals in UASB reactor to treat synthetic acid mine drainage and cheese whey wastewater as carbon source.
    Sampaio GF; Dos Santos AM; da Costa PR; Rodriguez RP; Sancinetti GP
    Water Environ Res; 2020 Feb; 92(2):245-254. PubMed ID: 31472092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfate and metals removal from acid mine drainage in a horizontal anaerobic immobilized biomass (HAIB) reactor.
    Braga JK; de Melo Júnior OM; Rodriguez RP; Sancinetti GP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(12):1436-1449. PubMed ID: 32812506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term performance of a UASB reactor treating acid mine drainage: effects of sulfate loading rate, hydraulic retention time, and COD/SO
    Cunha MP; Ferraz RM; Sancinetti GP; Rodriguez RP
    Biodegradation; 2019 Feb; 30(1):47-58. PubMed ID: 30406872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.
    Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E
    J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic sulphate-reducing microbial process using UASB reactor for heavy metals decontamination.
    de Lima AC; Gonçalves MM; Granato M; Leite SG
    Environ Technol; 2001 Mar; 22(3):261-70. PubMed ID: 11346283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of acid mine drainage using microbial fuel cell based on sludge anaerobic fermentation.
    Peng X; Tang T; Zhu X; Jia G; Ding Y; Chen Y; Yang Y; Tang W
    Environ Technol; 2017 Oct; 38(19):2400-2409. PubMed ID: 27852149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic co-digestion of landfill leachate and acid mine drainage using up-flow anaerobic sludge blanket reactor.
    Zhou S; Wang J; Peng S; Chen T; Yue Z
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8498-8506. PubMed ID: 33067788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-treatment of UASB effluent in an expanded granular sludge bed reactor type using flocculent sludge.
    Kato MT; Florencio L; Arantes RF
    Water Sci Technol; 2003; 48(6):279-84. PubMed ID: 14640229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.
    Zhang M; Wang H; Han X
    Chemosphere; 2016 Jul; 154():215-223. PubMed ID: 27058913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfate reduction at low pH to remediate acid mine drainage.
    Sánchez-Andrea I; Sanz JL; Bijmans MF; Stams AJ
    J Hazard Mater; 2014 Mar; 269():98-109. PubMed ID: 24444599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the liquid upflow velocity on thermophilic sulphate reduction in acidifying granular sludge reactors.
    Lens PN; Korthout D; van Lier JB; Hulshoff Pol LW; Lettinga G
    Environ Technol; 2001 Feb; 22(2):183-93. PubMed ID: 11349377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor.
    Guerrero-Barajas C; Ordaz A; García-Solares SM; Garibay-Orijel C; Bastida-González F; Zárate-Segura PB
    J Vis Exp; 2015 Oct; (105):e52956. PubMed ID: 26555802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ORP, recycling rate, and HRT on simultaneous sulfate reduction and sulfur production in expanded granular sludge bed (EGSB) reactors under micro-aerobic conditions for treating molasses distillery wastewater.
    Qinglin X; Yanhong L; Shaoyuan B; Hongda J
    Water Sci Technol; 2012; 66(6):1253-62. PubMed ID: 22828303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal efficiency and methanogenic activity profiles in a pilot-scale UASB reactor treating settled sewage at moderate temperatures.
    Seghezzo L; Guerra RG; González SM; Trupiano AP; Figueroa ME; Cuevas CM; Zeeman G; Lettinga G
    Water Sci Technol; 2002; 45(10):243-8. PubMed ID: 12188552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.
    Shen DS; He R; Liu XW; Long Y
    J Hazard Mater; 2006 Aug; 136(3):645-53. PubMed ID: 16513261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfidogenic fluidized bed treatment of real acid mine drainage water.
    Sahinkaya E; Gunes FM; Ucar D; Kaksonen AH
    Bioresour Technol; 2011 Jan; 102(2):683-9. PubMed ID: 20832297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.