These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28592378)

  • 1. No FAD, No CRY: Redox and Circadian Rhythms.
    Pritchett D; Reddy AB
    Trends Biochem Sci; 2017 Jul; 42(7):497-499. PubMed ID: 28592378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FAD Regulates CRYPTOCHROME Protein Stability and Circadian Clock in Mice.
    Hirano A; Braas D; Fu YH; Ptáček LJ
    Cell Rep; 2017 Apr; 19(2):255-266. PubMed ID: 28402850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative properties and functions of type 2 and type 4 pigeon cryptochromes.
    Wang X; Jing C; Selby CP; Chiou YY; Yang Y; Wu W; Sancar A; Wang J
    Cell Mol Life Sci; 2018 Dec; 75(24):4629-4641. PubMed ID: 30264181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa.
    Froehlich AC; Chen CH; Belden WJ; Madeti C; Roenneberg T; Merrow M; Loros JJ; Dunlap JC
    Eukaryot Cell; 2010 May; 9(5):738-50. PubMed ID: 20305004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH.
    Damiani MJ; Yalloway GN; Lu J; McLeod NR; O'Neill MA
    Biochemistry; 2009 Dec; 48(48):11399-411. PubMed ID: 19888752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavin reduction activates Drosophila cryptochrome.
    Vaidya AT; Top D; Manahan CC; Tokuda JM; Zhang S; Pollack L; Young MW; Crane BR
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20455-60. PubMed ID: 24297896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of Cys392, Asp393, and ATP on the FAD Binding, Photoreduction, and the Stability of the Radical State of Chlamydomonas reinhardtii Cryptochrome.
    Xu L; Wen B; Shao W; Yao P; Zheng W; Zhou Z; Zhang Y; Zhu G
    Chembiochem; 2019 Apr; 20(7):940-948. PubMed ID: 30548754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural and functional roles of the flavin cofactor FAD in mammalian cryptochromes.
    Calloni G; Vabulas RM
    Front Mol Biosci; 2022; 9():1081661. PubMed ID: 36660433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the steric impact of flavin adenine dinucleotide in Drosophila melanogaster cryptochrome function.
    Masiero A; Aufiero S; Minervini G; Moro S; Costa R; Tosatto SC
    Biochem Biophys Res Commun; 2014 Aug; 450(4):1606-11. PubMed ID: 25026553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causal involvement of mammalian-type cryptochrome in the circadian cuticle deposition rhythm in the bean bug Riptortus pedestris.
    Ikeno T; Katagiri C; Numata H; Goto SG
    Insect Mol Biol; 2011 Jun; 20(3):409-15. PubMed ID: 21435062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity.
    Zhang Y; Markert MJ; Groves SC; Hardin PE; Merlin C
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7516-E7525. PubMed ID: 28831003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residues at a Single Site Differentiate Animal Cryptochromes from Cyclobutane Pyrimidine Dimer Photolyases by Affecting the Proteins' Preferences for Reduced FAD.
    Xu L; Wen B; Wang Y; Tian C; Wu M; Zhu G
    Chembiochem; 2017 Jun; 18(12):1129-1137. PubMed ID: 28393477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C-terminus of a diatom plant-like cryptochrome influences the FAD redox state and binding of interaction partners.
    Krischer J; König S; Weisheit W; Mittag M; Büchel C
    J Exp Bot; 2022 Apr; 73(7):1934-1948. PubMed ID: 35034113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A positive role for PERIOD in mammalian circadian gene expression.
    Akashi M; Okamoto A; Tsuchiya Y; Todo T; Nishida E; Node K
    Cell Rep; 2014 May; 7(4):1056-64. PubMed ID: 24794436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Characterization and Expression Profiles of Cryptochrome Genes in a Long-Distance Migrant, Agrotis segetum (Lepidoptera: Noctuidae).
    Chang H; Guo JL; Fu XW; Wang ML; Hou YM; Wu KM
    J Insect Sci; 2019 Jan; 19(1):. PubMed ID: 30690535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular evolution of cryptochromes in fishes.
    Mei Q; Sadovy Y; Dvornyk V
    Gene; 2015 Dec; 574(1):112-20. PubMed ID: 26238701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clock-dependent chromatin topology modulates circadian transcription and behavior.
    Mermet J; Yeung J; Hurni C; Mauvoisin D; Gustafson K; Jouffe C; Nicolas D; Emmenegger Y; Gobet C; Franken P; Gachon F; Naef F
    Genes Dev; 2018 Mar; 32(5-6):347-358. PubMed ID: 29572261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis.
    Öztürk N; Song SH; Selby CP; Sancar A
    J Biol Chem; 2008 Feb; 283(6):3256-3263. PubMed ID: 18056988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural differences in the FAD-binding pockets and lid loops of mammalian CRY1 and CRY2 for isoform-selective regulation.
    Miller S; Srivastava A; Nagai Y; Aikawa Y; Tama F; Hirota T
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34172584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory Impact of the C-Terminal Tail on Charge Transfer Pathways in
    Richter M; Fingerhut BP
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33086760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.