These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28592684)

  • 21. Curved saccade trajectories: voluntary and reflexive saccades curve away from irrelevant distractors.
    Doyle M; Walker R
    Exp Brain Res; 2001 Aug; 139(3):333-44. PubMed ID: 11545472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence.
    Paré M; Munoz DP
    J Neurophysiol; 1996 Dec; 76(6):3666-81. PubMed ID: 8985865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transforming sensory perceptions into motor commands: evidence from programming of eye movements.
    Leigh RJ; Rottach KG; Das VE
    Ann N Y Acad Sci; 1997 Dec; 835():353-62. PubMed ID: 9616785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parietal representation of object-based saccades.
    Sabes PN; Breznen B; Andersen RA
    J Neurophysiol; 2002 Oct; 88(4):1815-29. PubMed ID: 12364508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of object displacement during a saccade is prioritized by the oculomotor system.
    van Leeuwen J; Belopolsky AV
    J Vis; 2019 Sep; 19(11):11. PubMed ID: 31533149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model of the control of saccades by superior colliculus and cerebellum.
    Quaia C; Lefèvre P; Optican LM
    J Neurophysiol; 1999 Aug; 82(2):999-1018. PubMed ID: 10444693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gaze shifts evoked by stimulation of the superior colliculus in the head-free cat conform to the motor map but also depend on stimulus strength and fixation activity.
    Paré M; Crommelinck M; Guitton D
    Exp Brain Res; 1994; 101(1):123-39. PubMed ID: 7843291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feature-based attention across saccades: Pop-out in color search is spatiotopic.
    Eymond C; Cavanagh P; Collins T
    Atten Percept Psychophys; 2019 Jan; 81(1):85-97. PubMed ID: 30288690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of a re-centering bias in saccade regulation by superior colliculus neurons.
    Paré M; Munoz DP
    Exp Brain Res; 2001 Apr; 137(3-4):354-68. PubMed ID: 11355382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion.
    Zivotofsky AZ; Rottach KG; Averbuch-Heller L; Kori AA; Thomas CW; Dell'Osso LF; Leigh RJ
    J Neurophysiol; 1996 Dec; 76(6):3617-32. PubMed ID: 8985862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of saccade trajectories during sequential saccades.
    Azadi R; Zhu EY; McPeek RM
    J Neurophysiol; 2021 Mar; 125(3):796-804. PubMed ID: 33471606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual masking and visual integration across saccadic eye movements.
    Irwin DE; Brown JS; Sun JS
    J Exp Psychol Gen; 1988 Sep; 117(3):276-87. PubMed ID: 2971763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Location and identity memory of saccade targets.
    Lin IF; Gorea A
    Vision Res; 2011 Feb; 51(3):323-32. PubMed ID: 21115027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulations of saccade curvature by models that place superior colliculus upstream from the local feedback loop.
    Walton MM; Sparks DL; Gandhi NJ
    J Neurophysiol; 2005 Apr; 93(4):2354-8. PubMed ID: 15615826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.
    Marino RA; Levy R; Munoz DP
    J Neurophysiol; 2015 Aug; 114(2):879-92. PubMed ID: 26063770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activity in deep intermediate layer collicular neurons during interrupted saccades.
    Keller EL; Gandhi NJ; Vijay Sekaran S
    Exp Brain Res; 2000 Jan; 130(2):227-37. PubMed ID: 10672476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequential activity of simultaneously recorded neurons in the superior colliculus during curved saccades.
    Port NL; Wurtz RH
    J Neurophysiol; 2003 Sep; 90(3):1887-903. PubMed ID: 12966180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural activity in the primate superior colliculus and saccadic reaction times in double-step experiments.
    Lünenburger L; Lindner W; Hoffmann KP
    Prog Brain Res; 2003; 142():91-107. PubMed ID: 12693256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Further evidence that a shared efferent collicular pathway drives separate circuits for smooth eye movements and saccades.
    Missal M; Coimbra A; Lefèvre P; Olivier E
    Exp Brain Res; 2002 Dec; 147(3):344-52. PubMed ID: 12428142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatiotopic and retinotopic memory in the context of natural images.
    Steinberg NJ; Roth ZN; Merriam EP
    J Vis; 2022 Mar; 22(4):11. PubMed ID: 35323869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.