These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28592685)

  • 1. Robotic navigation to subcortical neural tissue for intracellular electrophysiology in vivo.
    Stoy WA; Kolb I; Holst GL; Liew Y; Pala A; Yang B; Boyden ES; Stanley GB; Forest CR
    J Neurophysiol; 2017 Aug; 118(2):1141-1150. PubMed ID: 28592685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomous patch-clamp robot for functional characterization of neurons in vivo: development and application to mouse visual cortex.
    Holst GL; Stoy W; Yang B; Kolb I; Kodandaramaiah SB; Li L; Knoblich U; Zeng H; Haider B; Boyden ES; Forest CR
    J Neurophysiol; 2019 Jun; 121(6):2341-2357. PubMed ID: 30969898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensation of physiological motion enables high-yield whole-cell recording in vivo.
    Stoy WM; Yang B; Kight A; Wright NC; Borden PY; Stanley GB; Forest CR
    J Neurosci Methods; 2021 Jan; 348():109008. PubMed ID: 33242530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology.
    Annecchino LA; Morris AR; Copeland CS; Agabi OE; Chadderton P; Schultz SR
    Neuron; 2017 Aug; 95(5):1048-1055.e3. PubMed ID: 28858615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of autopatching with automated pipette and cell detection in vitro.
    Wu 吴秋雨 Q; Kolb I; Callahan BM; Su Z; Stoy W; Kodandaramaiah SB; Neve R; Zeng H; Boyden ES; Forest CR; Chubykin AA
    J Neurophysiol; 2016 Oct; 116(4):1564-1578. PubMed ID: 27385800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated whole-cell patch-clamp electrophysiology of neurons in vivo.
    Kodandaramaiah SB; Franzesi GT; Chow BY; Boyden ES; Forest CR
    Nat Methods; 2012 Jun; 9(6):585-7. PubMed ID: 22561988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning-Based Pipette Positional Correction for Automatic Patch Clamp
    Gonzalez MM; Lewallen CF; Yip MC; Forest CR
    eNeuro; 2021; 8(4):. PubMed ID: 34312222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-cell Patch-clamp Recordings in Brain Slices.
    Segev A; Garcia-Oscos F; Kourrich S
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27341060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed-Loop Real-Time Imaging Enables Fully Automated Cell-Targeted Patch-Clamp Neural Recording In Vivo.
    Suk HJ; van Welie I; Kodandaramaiah SB; Allen B; Forest CR; Boyden ES
    Neuron; 2017 Aug; 95(5):1037-1047.e11. PubMed ID: 28858614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal Pipette Resistance, Seal Resistance, and Zero-Current Membrane Potential for Loose Patch or Breakthrough Whole-Cell Recording
    Yan L; Fang Q; Zhang X; Huang B
    Front Neural Circuits; 2020; 14():34. PubMed ID: 32714153
    [No Abstract]   [Full Text] [Related]  

  • 11. Culturing and electrophysiology of cells on NRCC patch-clamp chips.
    Py C; Martina M; Monette R; Comas T; Denhoff MW; Luk C; Syed NI; Mealing G
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22348948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain.
    Margrie TW; Brecht M; Sakmann B
    Pflugers Arch; 2002 Jul; 444(4):491-8. PubMed ID: 12136268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel way to go whole-cell in patch-clamp experiments.
    Inayat S; Zhao Y; Cantrell DR; Dikin D; Pinto LH; Troy JB
    IEEE Trans Biomed Eng; 2010 Nov; 57(11):. PubMed ID: 20595080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a novel automated ion channel recording method using "inside-out" whole-cell membranes.
    Vasilyev DV; Merrill TL; Bowlby MR
    J Biomol Screen; 2005 Dec; 10(8):806-13. PubMed ID: 16234349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Automated Image-guided Patch Clamp for the Study of Neurons in Brain Slices.
    Wu Q; Chubykin AA
    J Vis Exp; 2017 Jul; (125):. PubMed ID: 28784955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-cell patch-clamp recordings in freely moving animals.
    Lee AK; Epsztein J; Brecht M
    Methods Mol Biol; 2014; 1183():263-76. PubMed ID: 25023315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Patch-Clamp Studies.
    Zhou Y; Li H; Xiao Z
    Methods Mol Biol; 2021; 2188():259-271. PubMed ID: 33119856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-neuron intracellular recording in vivo via interacting autopatching robots.
    Kodandaramaiah SB; Flores FJ; Holst GL; Singer AC; Han X; Brown EN; Boyden ES; Forest CR
    Elife; 2018 Jan; 7():. PubMed ID: 29297466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PatcherBot: a single-cell electrophysiology robot for adherent cells and brain slices.
    Kolb I; Landry CR; Yip MC; Lewallen CF; Stoy WA; Lee J; Felouzis A; Yang B; Boyden ES; Rozell CJ; Forest CR
    J Neural Eng; 2019 Aug; 16(4):046003. PubMed ID: 30970335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patch-clamp and multi-electrode array electrophysiological analysis in acute mouse brain slices.
    Manz KM; Siemann JK; McMahon DG; Grueter BA
    STAR Protoc; 2021 Jun; 2(2):100442. PubMed ID: 33899023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.