BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 28592689)

  • 1. Control of the strength of visual-motor transmission as the mechanism of rapid adaptation of priors for Bayesian inference in smooth pursuit eye movements.
    Darlington TR; Tokiyama S; Lisberger SG
    J Neurophysiol; 2017 Aug; 118(2):1173-1189. PubMed ID: 28592689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of bayesian priors and sensory data and its neural circuit implementation in visually guided movement.
    Yang J; Lee J; Lisberger SG
    J Neurosci; 2012 Dec; 32(49):17632-45. PubMed ID: 23223286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural implementation of Bayesian inference in a sensorimotor behavior.
    Darlington TR; Beck JM; Lisberger SG
    Nat Neurosci; 2018 Oct; 21(10):1442-1451. PubMed ID: 30224803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sensory-motor decoder that transforms neural responses in extrastriate area MT into smooth pursuit eye movements.
    Behling S; Lisberger SG
    J Neurophysiol; 2023 Sep; 130(3):652-670. PubMed ID: 37584096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different mechanisms for modulation of the initiation and steady-state of smooth pursuit eye movements.
    Behling S; Lisberger SG
    J Neurophysiol; 2020 Mar; 123(3):1265-1276. PubMed ID: 32073944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between adapted neural population responses in MT and motion adaptation in speed and direction of smooth-pursuit eye movements.
    Yang J; Lisberger SG
    J Neurophysiol; 2009 May; 101(5):2693-707. PubMed ID: 19225178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian approaches to smooth pursuit of random dot kinematograms: effects of varying RDK noise and the predictability of RDK direction.
    Rubinstein JF; Singh M; Kowler E
    J Neurophysiol; 2024 Feb; 131(2):394-416. PubMed ID: 38149327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal integration of visual motion signals for smooth pursuit eye movements in monkeys.
    Osborne LC; Lisberger SG
    J Neurophysiol; 2009 Oct; 102(4):2013-25. PubMed ID: 19657083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time course of precision in smooth-pursuit eye movements of monkeys.
    Osborne LC; Hohl SS; Bialek W; Lisberger SG
    J Neurosci; 2007 Mar; 27(11):2987-98. PubMed ID: 17360922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A population decoding framework for motion aftereffects on smooth pursuit eye movements.
    Gardner JL; Tokiyama SN; Lisberger SG
    J Neurosci; 2004 Oct; 24(41):9035-48. PubMed ID: 15483122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of the gain of visual-motor transmission occurs in visual coordinates for smooth pursuit eye movements.
    Lee J; Yang J; Lisberger SG
    J Neurosci; 2013 May; 33(22):9420-30. PubMed ID: 23719810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of arcuate frontal cortex of monkeys in smooth pursuit eye movements. I. Basic response properties to retinal image motion and position.
    Tanaka M; Lisberger SG
    J Neurophysiol; 2002 Jun; 87(6):2684-99. PubMed ID: 12037171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal Filter for Visual Motion Integration from Pursuit Eye Movements in Humans and Monkeys.
    Mukherjee T; Liu B; Simoncini C; Osborne LC
    J Neurosci; 2017 Feb; 37(6):1394-1412. PubMed ID: 28003348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smooth pursuit preparation modulates neuronal responses in visual areas MT and MST.
    Ferrera VP
    J Neurophysiol; 2015 Jul; 114(1):638-49. PubMed ID: 26019315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic causal modelling of eye movements during pursuit: Confirming precision-encoding in V1 using MEG.
    Adams RA; Bauer M; Pinotsis D; Friston KJ
    Neuroimage; 2016 May; 132():175-189. PubMed ID: 26921713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of multiple components of pursuit eye movement by microstimulation in the arcuate frontal pursuit area in monkeys.
    Tanaka M; Lisberger SG
    J Neurophysiol; 2002 Feb; 87(2):802-18. PubMed ID: 11826048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive responses of periarcuate pursuit neurons to visual target motion.
    Fukushima K; Yamanobe T; Shinmei Y; Fukushima J
    Exp Brain Res; 2002 Jul; 145(1):104-20. PubMed ID: 12070750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of a moving distractor on the initiation of smooth-pursuit eye movements.
    Ferrera VP; Lisberger SG
    Vis Neurosci; 1997; 14(2):323-38. PubMed ID: 9147484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encoding of Reward and Decoding Movement from the Frontal Eye Field during Smooth Pursuit Eye Movements.
    Lixenberg A; Joshua M
    J Neurosci; 2018 Dec; 38(49):10515-10524. PubMed ID: 30355635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye Position Error Influence over "Open-Loop" Smooth Pursuit Initiation.
    Buonocore A; Skinner J; Hafed ZM
    J Neurosci; 2019 Apr; 39(14):2709-2721. PubMed ID: 30709895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.