These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Causal Evidence for the Role of Neuronal Oscillations in Top-Down and Bottom-Up Attention. Riddle J; Hwang K; Cellier D; Dhanani S; D'Esposito M J Cogn Neurosci; 2019 May; 31(5):768-779. PubMed ID: 30726180 [TBL] [Abstract][Full Text] [Related]
5. Gamma Synchronization between V1 and V4 Improves Behavioral Performance. Rohenkohl G; Bosman CA; Fries P Neuron; 2018 Nov; 100(4):953-963.e3. PubMed ID: 30318415 [TBL] [Abstract][Full Text] [Related]
6. Gating by induced Α-Γ asynchrony in selective attention. Pascucci D; Hervais-Adelman A; Plomp G Hum Brain Mapp; 2018 Oct; 39(10):3854-3870. PubMed ID: 29797747 [TBL] [Abstract][Full Text] [Related]
7. Visual areas exert feedforward and feedback influences through distinct frequency channels. Bastos AM; Vezoli J; Bosman CA; Schoffelen JM; Oostenveld R; Dowdall JR; De Weerd P; Kennedy H; Fries P Neuron; 2015 Jan; 85(2):390-401. PubMed ID: 25556836 [TBL] [Abstract][Full Text] [Related]
8. Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas. Michalareas G; Vezoli J; van Pelt S; Schoffelen JM; Kennedy H; Fries P Neuron; 2016 Jan; 89(2):384-97. PubMed ID: 26777277 [TBL] [Abstract][Full Text] [Related]
9. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks. Long NM; Kuhl BA J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930 [TBL] [Abstract][Full Text] [Related]
10. Coordination of top-down influence on V1 responses by interneurons and brain rhythms. Tani R; Kashimori Y Biosystems; 2021 Sep; 207():104452. PubMed ID: 34139291 [TBL] [Abstract][Full Text] [Related]
11. Attention Configures Synchronization Within Local Neuronal Networks for Processing of the Behaviorally Relevant Stimulus. Drebitz E; Haag M; Grothe I; Mandon S; Kreiter AK Front Neural Circuits; 2018; 12():71. PubMed ID: 30210309 [TBL] [Abstract][Full Text] [Related]
14. A theta rhythm in macaque visual cortex and its attentional modulation. Spyropoulos G; Bosman CA; Fries P Proc Natl Acad Sci U S A; 2018 Jun; 115(24):E5614-E5623. PubMed ID: 29848632 [TBL] [Abstract][Full Text] [Related]
15. Inferior-frontal cortex phase synchronizes with the temporal-parietal junction prior to successful change detection. Micheli C; Kaping D; Westendorff S; Valiante TA; Womelsdorf T Neuroimage; 2015 Oct; 119():417-31. PubMed ID: 26119023 [TBL] [Abstract][Full Text] [Related]
16. Stimulus repetition modulates gamma-band synchronization in primate visual cortex. Brunet NM; Bosman CA; Vinck M; Roberts M; Oostenveld R; Desimone R; De Weerd P; Fries P Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3626-31. PubMed ID: 24554080 [TBL] [Abstract][Full Text] [Related]
17. The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. Fries P; Womelsdorf T; Oostenveld R; Desimone R J Neurosci; 2008 Apr; 28(18):4823-35. PubMed ID: 18448659 [TBL] [Abstract][Full Text] [Related]
18. Relative precision of top-down attentional modulations is lower in early visual cortex compared to mid- and high-level visual areas. Park S; Serences JT J Neurophysiol; 2022 Feb; 127(2):504-518. PubMed ID: 35020526 [TBL] [Abstract][Full Text] [Related]