These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 28592700)

  • 1. Thrombosis in diabetes: a shear flow effect?
    Westein E; Hoefer T; Calkin AC
    Clin Sci (Lond); 2017 Jun; 131(12):1245-1260. PubMed ID: 28592700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platelet hyperactivity in type 2 diabetes: role of antiplatelet agents.
    Natarajan A; Zaman AG; Marshall SM
    Diab Vasc Dis Res; 2008 Jun; 5(2):138-44. PubMed ID: 18537103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical thrombosis: the dark side of force and dawn of mechano-medicine.
    Chen Y; Ju LA
    Stroke Vasc Neurol; 2020 Jun; 5(2):185-197. PubMed ID: 32606086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antithrombotic properties of pravastatin reducing intra-thrombus fibrin deposition under high shear blood flow conditions.
    Hamada M; Sugimoto M; Matsui H; Mizuno T; Shida Y; Doi M; Fukushima H; Nishio K; Yoshioka A; Shima M
    Thromb Haemost; 2011 Feb; 105(2):313-20. PubMed ID: 21136018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ticlopidine on von Willebrand factor-mediated shear-induced platelet activation and aggregation.
    Goto S; Tamura N; Sakakibara M; Ikeda Y; Handa S
    Platelets; 2001 Nov; 12(7):406-14. PubMed ID: 11674857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coagulation Factor XI Promotes Distal Platelet Activation and Single Platelet Consumption in the Bloodstream Under Shear Flow.
    Zilberman-Rudenko J; Itakura A; Wiesenekker CP; Vetter R; Maas C; Gailani D; Tucker EI; Gruber A; Gerdes C; McCarty OJ
    Arterioscler Thromb Vasc Biol; 2016 Mar; 36(3):510-7. PubMed ID: 26769048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paradoxical Effect of Nonphysiological Shear Stress on Platelets and von Willebrand Factor.
    Chen Z; Mondal NK; Ding J; Koenig SC; Slaughter MS; Wu ZJ
    Artif Organs; 2016 Jul; 40(7):659-68. PubMed ID: 26582038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-human VWF monoclonal antibody SZ-123 prevents arterial thrombus formation by inhibiting VWF-collagen and VWF-platelet interactions in Rhesus monkeys.
    Zhao YM; Jiang M; Ji SD; He Y; Shen F; Li XM; Ruan CG
    Biochem Pharmacol; 2013 Apr; 85(7):945-53. PubMed ID: 23295157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platelets and primary haemostasis.
    Clemetson KJ
    Thromb Res; 2012 Mar; 129(3):220-4. PubMed ID: 22178577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-thrombotic effects and bleeding risk of AJvW-2, a monoclonal antibody against human von Willebrand factor.
    Kageyama S; Yamamoto H; Nagano M; Arisaka H; Kayahara T; Yoshimoto R
    Br J Pharmacol; 1997 Sep; 122(1):165-71. PubMed ID: 9298543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current state and novel approaches of antiplatelet therapy.
    Metharom P; Berndt MC; Baker RI; Andrews RK
    Arterioscler Thromb Vasc Biol; 2015 Jun; 35(6):1327-38. PubMed ID: 25838432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting von Willebrand factor as a novel anti-platelet therapy; application of ARC1779, an Anti-vWF aptamer, against thrombotic risk.
    Bae ON
    Arch Pharm Res; 2012 Oct; 35(10):1693-9. PubMed ID: 23139119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thrombus Formation at High Shear Rates.
    Casa LDC; Ku DN
    Annu Rev Biomed Eng; 2017 Jun; 19():415-433. PubMed ID: 28441034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis.
    Jennings LK
    Thromb Haemost; 2009 Aug; 102(2):248-57. PubMed ID: 19652875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnesium maintains endothelial integrity, up-regulates proteolysis of ultra-large von Willebrand factor, and reduces platelet aggregation under flow conditions.
    Dong JF; Cruz MA; Aboulfatova K; Martin C; Choi H; Bergeron AL; Martini SR; Kroll MH; Kent TA
    Thromb Haemost; 2008 Mar; 99(3):586-93. PubMed ID: 18327408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific inhibiting characteristics of tetramethylpyrazine, one of the active ingredients of the Chinese herbal medicine 'Chuanxiong,' on platelet thrombus formation under high shear rates.
    Li M; Handa S; Ikeda Y; Goto S
    Thromb Res; 2001 Oct; 104(1):15-28. PubMed ID: 11583735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods and models to evaluate shear-dependent and surface reactivity-dependent antithrombotic efficacy.
    Sakariassen KS; Hanson SR; Cadroy Y
    Thromb Res; 2001 Nov; 104(3):149-74. PubMed ID: 11672758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiating haemostasis from thrombosis for therapeutic benefit.
    McFadyen JD; Jackson SP
    Thromb Haemost; 2013 Nov; 110(5):859-67. PubMed ID: 23945664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel antiplatelet activity of protocatechuic acid through the inhibition of high shear stress-induced platelet aggregation.
    Kim K; Bae ON; Lim KM; Noh JY; Kang S; Chung KY; Chung JH
    J Pharmacol Exp Ther; 2012 Dec; 343(3):704-11. PubMed ID: 22984226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological properties of a specific Galpha q/11 inhibitor, YM-254890, on platelet functions and thrombus formation under high-shear stress.
    Uemura T; Kawasaki T; Taniguchi M; Moritani Y; Hayashi K; Saito T; Takasaki J; Uchida W; Miyata K
    Br J Pharmacol; 2006 May; 148(1):61-9. PubMed ID: 16520742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.