BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28592808)

  • 1. SNX10 gene mutation leading to osteopetrosis with dysfunctional osteoclasts.
    Stattin EL; Henning P; Klar J; McDermott E; Stecksen-Blicks C; Sandström PE; Kellgren TG; Rydén P; Hallmans G; Lönnerholm T; Ameur A; Helfrich MH; Coxon FP; Dahl N; Wikström J; Lerner UH
    Sci Rep; 2017 Jun; 7(1):3012. PubMed ID: 28592808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An SNX10 mutation causes malignant osteopetrosis of infancy.
    Aker M; Rouvinski A; Hashavia S; Ta-Shma A; Shaag A; Zenvirt S; Israel S; Weintraub M; Taraboulos A; Bar-Shavit Z; Elpeleg O
    J Med Genet; 2012 Apr; 49(4):221-6. PubMed ID: 22499339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Massive osteopetrosis caused by non-functional osteoclasts in R51Q SNX10 mutant mice.
    Stein M; Barnea-Zohar M; Shalev M; Arman E; Brenner O; Winograd-Katz S; Gerstung J; Thalji F; Kanaan M; Elinav H; Stepensky P; Geiger B; Tuckermann J; Elson A
    Bone; 2020 Jul; 136():115360. PubMed ID: 32278070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteopetrorickets due to Snx10 deficiency in mice results from both failed osteoclast activity and loss of gastric acid-dependent calcium absorption.
    Ye L; Morse LR; Zhang L; Sasaki H; Mills JC; Odgren PR; Sibbel G; Stanley JR; Wong G; Zamarioli A; Battaglino RA
    PLoS Genet; 2015 Mar; 11(3):e1005057. PubMed ID: 25811986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome sequencing identifies a large non-coding region deletion of SNX10 causing autosomal recessive osteopetrosis.
    Udupa P; Ghosh DK; Kausthubham N; Shah H; Bartakke S; Dalal A; Girisha KM; Bhavani GS
    J Hum Genet; 2023 Apr; 68(4):287-290. PubMed ID: 36526684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SNX10 mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity.
    Pangrazio A; Fasth A; Sbardellati A; Orchard PJ; Kasow KA; Raza J; Albayrak C; Albayrak D; Vanakker OM; De Moerloose B; Vellodi A; Notarangelo LD; Schlack C; Strauss G; Kühl JS; Caldana E; Lo Iacono N; Susani L; Kornak U; Schulz A; Vezzoni P; Villa A; Sobacchi C
    J Bone Miner Res; 2013 May; 28(5):1041-9. PubMed ID: 23280965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteopetrosis associated with PLEKHM1 and SNX10 genes, both involved in osteoclast vesicular trafficking.
    Huybrechts Y; Van Hul W
    Bone; 2022 Nov; 164():116520. PubMed ID: 35981699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of induced pluripotent stem cells (ARO-iPSC1-11) from a patient with autosomal recessive osteopetrosis harboring the c.212+1G>T mutation in SNX10 gene.
    Xu M; Stattin EL; Murphy M; Barry F
    Stem Cell Res; 2017 Oct; 24():51-54. PubMed ID: 29034896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations.
    Guerrini MM; Sobacchi C; Cassani B; Abinun M; Kilic SS; Pangrazio A; Moratto D; Mazzolari E; Clayton-Smith J; Orchard P; Coxon FP; Helfrich MH; Crockett JC; Mellis D; Vellodi A; Tezcan I; Notarangelo LD; Rogers MJ; Vezzoni P; Villa A; Frattini A
    Am J Hum Genet; 2008 Jul; 83(1):64-76. PubMed ID: 18606301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TCIRG1 and SNX10 gene mutations in the patients with autosomal recessive osteopetrosis.
    Koçak G; Güzel BN; Mıhçı E; Küpesiz OA; Yalçın K; Manguoğlu AE
    Gene; 2019 Jun; 702():83-88. PubMed ID: 30898715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of whole exome sequencing for the diagnosis of autosomal recessive malignant infantile osteopetrosis.
    Shamriz O; Shaag A; Yaacov B; NaserEddin A; Weintraub M; Elpeleg O; Stepensky P
    Clin Genet; 2017 Jul; 92(1):80-85. PubMed ID: 27187610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of human SNX10 reveals insights into its role in human autosomal recessive osteopetrosis.
    Xu T; Xu J; Ye Y; Wang Q; Shu X; Pei D; Liu J
    Proteins; 2014 Dec; 82(12):3483-9. PubMed ID: 25212774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SNX10 is required for osteoclast formation and resorption activity.
    Zhu CH; Morse LR; Battaglino RA
    J Cell Biochem; 2012 May; 113(5):1608-15. PubMed ID: 22174188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An SNX10-dependent mechanism downregulates fusion between mature osteoclasts.
    Barnea-Zohar M; Winograd-Katz SE; Shalev M; Arman E; Reuven N; Roth L; Golani O; Stein M; Thalji F; Kanaan M; Tuckermann J; Geiger B; Elson A
    J Cell Sci; 2021 May; 134(9):. PubMed ID: 33975343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor.
    Villa A; Guerrini MM; Cassani B; Pangrazio A; Sobacchi C
    Calcif Tissue Int; 2009 Jan; 84(1):1-12. PubMed ID: 19082854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular structure and function of sorting nexin 10 in skeletal disorders, cancers, and other pathological conditions.
    Xu J; Qiu H; Zhao J; Pavlos NJ
    J Cell Physiol; 2021 Jun; 236(6):4207-4215. PubMed ID: 33241559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malignant autosomal recessive osteopetrosis caused by spontaneous mutation of murine Rank.
    Kapur RP; Yao Z; Iida MH; Clarke CM; Doggett B; Xing L; Boyce BF
    J Bone Miner Res; 2004 Oct; 19(10):1689-97. PubMed ID: 15355564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disease status in autosomal dominant osteopetrosis type 2 is determined by osteoclastic properties.
    Chu K; Snyder R; Econs MJ
    J Bone Miner Res; 2006 Jul; 21(7):1089-97. PubMed ID: 16813529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteopetrosis: genetics, treatment and new insights into osteoclast function.
    Sobacchi C; Schulz A; Coxon FP; Villa A; Helfrich MH
    Nat Rev Endocrinol; 2013 Sep; 9(9):522-36. PubMed ID: 23877423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited rescue of osteoclast-poor osteopetrosis after successful engraftment by cord blood from an unrelated donor.
    Nicholls BM; Bredius RG; Hamdy NA; Gerritsen EJ; Lankester AC; Hogendoorn PC; Nesbitt SA; Horton MA; Flanagan AM
    J Bone Miner Res; 2005 Dec; 20(12):2264-70. PubMed ID: 16294279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.