These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 2859288)
21. The interaction of nucleotides with F1-ATPase inactivated with 4-chloro-7-nitrobenzofurazan. Gregory R; Recktenwald D; Hess B Biochim Biophys Acta; 1981 Apr; 635(2):284-94. PubMed ID: 6453611 [TBL] [Abstract][Full Text] [Related]
22. Effects of the inhibitors azide, dicyclohexylcarbodiimide, and aurovertin on nucleotide binding to the three F1-ATPase catalytic sites measured using specific tryptophan probes. Weber J; Senior AE J Biol Chem; 1998 Dec; 273(50):33210-5. PubMed ID: 9837890 [TBL] [Abstract][Full Text] [Related]
23. Cooperativity and stoichiometry of substrate binding to the catalytic sites of Escherichia coli F1-ATPase. Effects of magnesium, inhibitors, and mutation. Weber J; Wilke-Mounts S; Senior AE J Biol Chem; 1994 Aug; 269(32):20462-7. PubMed ID: 8051144 [TBL] [Abstract][Full Text] [Related]
24. Nucleotide-dependent and dicyclohexylcarbodiimide-sensitive conformational changes in the epsilon subunit of Escherichia coli ATP synthase. Mendel-Hartvig J; Capaldi RA Biochemistry; 1991 Nov; 30(45):10987-91. PubMed ID: 1834172 [TBL] [Abstract][Full Text] [Related]
25. Probes of inhibition of Escherichia coli F(1)-ATPase by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole in the presence of MgADP and MgATP support a bi-site mechanism of ATP hydrolysis by the enzyme. Bulygin VV; Milgrom YM Biochemistry (Mosc); 2010 Mar; 75(3):327-35. PubMed ID: 20370611 [TBL] [Abstract][Full Text] [Related]
26. Nucleotide interactions with the dicyclohexylcarbodiimide-sensitive adenosinetriphosphatase from spinach chloroplasts. Cerione RA; Hammes GG Biochemistry; 1981 Jun; 20(12):3359-65. PubMed ID: 6455155 [TBL] [Abstract][Full Text] [Related]
27. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides. Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287 [TBL] [Abstract][Full Text] [Related]
28. Characteristics of the formation of enzyme-bound ATP from medium inorganic phosphate by mitochondrial F1 adenosinetriphosphatase in the presence of dimethyl sulfoxide. Kandpal RP; Stempel KE; Boyer PD Biochemistry; 1987 Mar; 26(6):1512-7. PubMed ID: 2885026 [TBL] [Abstract][Full Text] [Related]
29. Pre-steady-state properties of bovine heart mitochondrial ATPase: a nucleotide-dependent H+ burst. Daggett SG; Schuster SM Biochim Biophys Acta; 1985 Jul; 808(2):280-7. PubMed ID: 2861850 [TBL] [Abstract][Full Text] [Related]
30. Modification of the (Ca2+ + Mg2+)-ATPase protein of sarcoplasmic reticulum with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Bailin G; Huang JR Biochim Biophys Acta; 1989 Apr; 995(2):122-32. PubMed ID: 2522798 [TBL] [Abstract][Full Text] [Related]
31. Properties of binding sites for adenine nucleotides on ATPase from yeast mitochondria. Hashimoto T; Negawa Y; Tagawa K J Biochem; 1981 Oct; 90(4):1141-50. PubMed ID: 6458599 [TBL] [Abstract][Full Text] [Related]
32. Tightly bound adenosine diphosphate, which inhibits the activity of mitochondrial F1-ATPase, is located at the catalytic site of the enzyme. Drobinskaya IY; Kozlov IA; Murataliev MB; Vulfson EN FEBS Lett; 1985 Mar; 182(2):419-24. PubMed ID: 2858407 [TBL] [Abstract][Full Text] [Related]
33. Hysteretic inhibition of the bovine heart mitochondrial F1-ATPase is due to saturation of noncatalytic sites with ADP which blocks activation of the enzyme by ATP. Jault JM; Allison WS J Biol Chem; 1994 Jan; 269(1):319-25. PubMed ID: 8276813 [TBL] [Abstract][Full Text] [Related]
34. Chemical modification of F1-ATPase by dicyclohexylcarbodiimide: application to analysis of the stoichiometry of subunits in Escherichia coli F1. Satre M; Bof M; Issartel JP; Vignais PV Biochemistry; 1982 Sep; 21(19):4772-6. PubMed ID: 6215938 [TBL] [Abstract][Full Text] [Related]
35. Nucleotide binding sites and chemical modification of the chromaffin granule proton ATPase. Moriyama Y; Nelson N J Biol Chem; 1987 Oct; 262(30):14723-9. PubMed ID: 2889730 [TBL] [Abstract][Full Text] [Related]
36. Investigation of the substrate structure and metal cofactor requirements of the rat liver mitochondrial ATP synthase/ATPase complex. Hanley-Trawick S; Carpen ME; Dunaway-Mariano D; Pedersen PL; Hullihen J Arch Biochem Biophys; 1989 Jan; 268(1):116-23. PubMed ID: 2521440 [TBL] [Abstract][Full Text] [Related]
37. The alpha 3 beta 3 gamma complex of the F1-ATPase from thermophilic Bacillus PS3 containing the alpha D261N substitution fails to dissociate inhibitory MgADP from a catalytic site when ATP binds to noncatalytic sites. Jault JM; Matsui T; Jault FM; Kaibara C; Muneyuki E; Yoshida M; Kagawa Y; Allison WS Biochemistry; 1995 Dec; 34(50):16412-8. PubMed ID: 8845368 [TBL] [Abstract][Full Text] [Related]
38. Steady-state rate of F1-ATPase turnover during ATP hydrolysis by the single catalytic site. Milgrom YaM ; Murataliev MB FEBS Lett; 1987 Feb; 212(1):63-7. PubMed ID: 2879744 [TBL] [Abstract][Full Text] [Related]
39. Asymmetry of the three catalytic sites on beta subunits of TF1 from a thermophilic Bacillus strain PS3. Hisabori T; Kobayashi H; Kaibara C; Yoshida M J Biochem; 1994 Mar; 115(3):497-501. PubMed ID: 8056763 [TBL] [Abstract][Full Text] [Related]
40. Effect of inhibitor binding to beta subunits of F1ATPase on enzyme thermostability: a kinetic and FT-IR spectroscopic analysis. Lippe G; Tanfani F; Di Pancrazio F; Contessi S; Bertoli E; Dabbeni-Sala F FEBS Lett; 1998 Aug; 432(3):128-32. PubMed ID: 9720910 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]