BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 28593022)

  • 1. MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence.
    Bu H; Wedel S; Cavinato M; Jansen-Dürr P
    Oxid Med Cell Longev; 2017; 2017():2398696. PubMed ID: 28593022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are microRNAs true sensors of ageing and cellular senescence?
    Williams J; Smith F; Kumar S; Vijayan M; Reddy PH
    Ageing Res Rev; 2017 May; 35():350-363. PubMed ID: 27903442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNAs, Aging, Cellular Senescence, and Alzheimer's Disease.
    Reddy PH; Williams J; Smith F; Bhatti JS; Kumar S; Vijayan M; Kandimalla R; Kuruva CS; Wang R; Manczak M; Yin X; Reddy AP
    Prog Mol Biol Transl Sci; 2017; 146():127-171. PubMed ID: 28253983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miRNAs in stem cell aging and age-related disease.
    Choi SW; Lee JY; Kang KS
    Mech Ageing Dev; 2017 Dec; 168():20-29. PubMed ID: 28847486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of microRNAs associated with Alzheimer's disease using oxidative stress cell model and different strains of senescence accelerated mice.
    Zhang R; Zhang Q; Niu J; Lu K; Xie B; Cui D; Xu S
    J Neurol Sci; 2014 Mar; 338(1-2):57-64. PubMed ID: 24423585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs mediate the senescence-associated decline of NRF2 in endothelial cells.
    Kuosmanen SM; Sihvola V; Kansanen E; Kaikkonen MU; Levonen AL
    Redox Biol; 2018 Sep; 18():77-83. PubMed ID: 29986211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA controls of cellular senescence.
    Suh N
    BMB Rep; 2018 Oct; 51(10):493-499. PubMed ID: 30269742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sirt1 and Parp1 as epigenome safeguards and microRNAs as SASP-associated signals, in cellular senescence and aging.
    Hekmatimoghaddam S; Dehghani Firoozabadi A; Zare-Khormizi MR; Pourrajab F
    Ageing Res Rev; 2017 Nov; 40():120-141. PubMed ID: 28993289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a.
    Rippo MR; Olivieri F; Monsurrò V; Prattichizzo F; Albertini MC; Procopio AD
    Exp Gerontol; 2014 Aug; 56():154-63. PubMed ID: 24607549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pak2 kinase promotes cellular senescence and organismal aging.
    Lee JS; Mo Y; Gan H; Burgess RJ; Baker DJ; van Deursen JM; Zhang Z
    Proc Natl Acad Sci U S A; 2019 Jul; 116(27):13311-13319. PubMed ID: 31209047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of cellular senescence by microRNAs.
    Ma X; Zheng Q; Zhao G; Yuan W; Liu W
    Mech Ageing Dev; 2020 Jul; 189():111264. PubMed ID: 32450085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of exosomes and microRNAs in senescence and aging.
    Xu D; Tahara H
    Adv Drug Deliv Rev; 2013 Mar; 65(3):368-75. PubMed ID: 22820533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The master switchers in the aging of cardiovascular system, reverse senescence by microRNA signatures; as highly conserved molecules.
    Pourrajab F; Vakili Zarch A; Hekmatimoghaddam S; Zare-Khormizi MR
    Prog Biophys Mol Biol; 2015 Nov; 119(2):111-28. PubMed ID: 26033200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular senescence in cardiovascular diseases: potential age-related mechanisms and implications for treatment.
    Olivieri F; Recchioni R; Marcheselli F; Abbatecola AM; Santini G; Borghetti G; Antonicelli R; Procopio AD
    Curr Pharm Des; 2013; 19(9):1710-9. PubMed ID: 23061728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. mir-24 activity propagates stress-induced senescence by down regulating DNA topoisomerase 1.
    Bu H; Baraldo G; Lepperdinger G; Jansen-Dürr P
    Exp Gerontol; 2016 Mar; 75():48-52. PubMed ID: 26748253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Regulation of Cellular Senescence by MicroRNAs: Implications in Cancer and Age-Related Diseases.
    Neault M; Couteau F; Bonneau É; De Guire V; Mallette FA
    Int Rev Cell Mol Biol; 2017; 334():27-98. PubMed ID: 28838541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs as a novel cellular senescence regulator.
    Liu FJ; Wen T; Liu L
    Ageing Res Rev; 2012 Jan; 11(1):41-50. PubMed ID: 21689787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative Stress and the Epigenetics of Cell Senescence: Insights from Progeroid Syndromes.
    Romá-Mateo C; Seco-Cervera M; Ibáñez-Cabellos JS; Pérez G; Berenguer-Pascual E; Rodríguez LR; García-Giménez JL
    Curr Pharm Des; 2018; 24(40):4755-4770. PubMed ID: 30644344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis.
    Portal-Núñez S; Esbrit P; Alcaraz MJ; Largo R
    Biochem Pharmacol; 2016 May; 108():1-10. PubMed ID: 26711691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caveolin-1, cellular senescence and age-related diseases.
    Zou H; Stoppani E; Volonte D; Galbiati F
    Mech Ageing Dev; 2011; 132(11-12):533-42. PubMed ID: 22100852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.