These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 28593203)
21. Molecularly resolved label-free sensing of single nucleobase mismatches by interfacial LNA probes. Mishra S; Lahiri H; Banerjee S; Mukhopadhyay R Nucleic Acids Res; 2016 May; 44(8):3739-49. PubMed ID: 27025649 [TBL] [Abstract][Full Text] [Related]
22. Magnetic nanoparticles for magnetoresistance-based biodetection. Sun X; Ho D; Lacroix LM; Xiao JQ; Sun S IEEE Trans Nanobioscience; 2012 Mar; 11(1):46-53. PubMed ID: 22157074 [TBL] [Abstract][Full Text] [Related]
23. Effects of Salt Concentration on a Magnetic Nanoparticle-Based Aggregation Assay with a Tunable Dynamic Range. Moss G; Knopke C; Diamond SG Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409281 [TBL] [Abstract][Full Text] [Related]
24. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization. Gooneratne CP; Kodzius R; Li F; Foulds IG; Kosel J Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27571084 [TBL] [Abstract][Full Text] [Related]
25. Magnetic sensing platform technologies for biomedical applications. Lin G; Makarov D; Schmidt OG Lab Chip; 2017 May; 17(11):1884-1912. PubMed ID: 28485417 [TBL] [Abstract][Full Text] [Related]
26. Configurational Statistics of Magnetic Bead Detection with Magnetoresistive Sensors. Henriksen AD; Ley MW; Flyvbjerg H; Hansen MF PLoS One; 2015; 10(10):e0141115. PubMed ID: 26496495 [TBL] [Abstract][Full Text] [Related]
27. Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads. Uddin R; Burger R; Donolato M; Fock J; Creagh M; Hansen MF; Boisen A Biosens Bioelectron; 2016 Nov; 85():351-357. PubMed ID: 27183287 [TBL] [Abstract][Full Text] [Related]
28. On-chip detection of rolling circle amplified DNA molecules from Bacillus globigii spores and Vibrio cholerae. Østerberg FW; Rizzi G; Donolato M; Bejhed RS; Mezger A; Strömberg M; Nilsson M; Strømme M; Svedlindh P; Hansen MF Small; 2014 Jul; 10(14):2877-82. PubMed ID: 24616417 [TBL] [Abstract][Full Text] [Related]
29. Towards a real-time, label-free, diamond-based DNA sensor. Vermeeren V; Bijnens N; Wenmackers S; Daenen M; Haenen K; Williams OA; Ameloot M; vandeVen M; Wagner P; Michiels L Langmuir; 2007 Dec; 23(26):13193-202. PubMed ID: 18004892 [TBL] [Abstract][Full Text] [Related]
30. Counterion association with native and denatured nucleic acids: an experimental approach. Völker J; Klump HH; Manning GS; Breslauer KJ J Mol Biol; 2001 Jul; 310(5):1011-25. PubMed ID: 11501992 [TBL] [Abstract][Full Text] [Related]
31. Rapid assessment of the stability of DNA duplexes by impedimetric real-time monitoring of chemically induced denaturation. van Grinsven B; Vanden Bon N; Grieten L; Murib M; Janssens SD; Haenen K; Schneider E; Ingebrandt S; Schöning MJ; Vermeeren V; Ameloot M; Michiels L; Thoelen R; De Ceuninck W; Wagner P Lab Chip; 2011 May; 11(9):1656-63. PubMed ID: 21448492 [TBL] [Abstract][Full Text] [Related]
33. Effect of the number of nucleic acid oligomer charges on the salt dependence of stability (DeltaG 37degrees) and melting temperature (Tm): NLPB analysis of experimental data. Shkel IA; Record MT Biochemistry; 2004 Jun; 43(22):7090-101. PubMed ID: 15170346 [TBL] [Abstract][Full Text] [Related]
34. Quantitative biomolecular sensing station based on magnetoresistive patterned arrays. Serrate D; De Teresa JM; Marquina C; Marzo J; Saurel D; Cardoso FA; Cardoso S; Freitas PP; Ibarra MR Biosens Bioelectron; 2012 May; 35(1):206-212. PubMed ID: 22459584 [TBL] [Abstract][Full Text] [Related]
35. The effect of temperature on electrochemically driven denaturation monitored by SERS. Papadopoulou E; Meneghello M; Marafini P; Johnson RP; Brown T; Bartlett PN Bioelectrochemistry; 2015 Dec; 106(Pt B):353-8. PubMed ID: 26145815 [TBL] [Abstract][Full Text] [Related]
36. Femtomolar limit of detection with a magnetoresistive biochip. Martins VC; Cardoso FA; Germano J; Cardoso S; Sousa L; Piedade M; Freitas PP; Fonseca LP Biosens Bioelectron; 2009 Apr; 24(8):2690-5. PubMed ID: 19261460 [TBL] [Abstract][Full Text] [Related]
37. Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system. Wang W; Wang Y; Tu L; Feng Y; Klein T; Wang JP Sci Rep; 2014 Jul; 4():5716. PubMed ID: 25043673 [TBL] [Abstract][Full Text] [Related]
38. Heat-transfer resistance at solid-liquid interfaces: a tool for the detection of single-nucleotide polymorphisms in DNA. van Grinsven B; Vanden Bon N; Strauven H; Grieten L; Murib M; Monroy KL; Janssens SD; Haenen K; Schöning MJ; Vermeeren V; Ameloot M; Michiels L; Thoelen R; De Ceuninck W; Wagner P ACS Nano; 2012 Mar; 6(3):2712-21. PubMed ID: 22356595 [TBL] [Abstract][Full Text] [Related]
39. Genotyping of single nucleotide polymorphisms by melting curve analysis using thin film semi-transparent heaters integrated in a lab-on-foil system. Ohlander A; Zilio C; Hammerle T; Zelenin S; Klink G; Chiari M; Bock K; Russom A Lab Chip; 2013 Jun; 13(11):2075-82. PubMed ID: 23592049 [TBL] [Abstract][Full Text] [Related]
40. Linear light-scattering of gold nanostars for versatile biosensing of nucleic acids and proteins using exonuclease III as biocatalyst to signal amplification. Bi S; Jia X; Ye J; Dong Y Biosens Bioelectron; 2015 Sep; 71():427-433. PubMed ID: 25950939 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]