BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28593373)

  • 1. Preparation of a self-cleanable molecularly imprinted sensor based on surface-enhanced Raman spectroscopy for selective detection of R6G.
    Li H; Wang Z; Wang X; Jiang J; Xu Y; Liu X; Yan Y; Li C
    Anal Bioanal Chem; 2017 Jul; 409(19):4627-4635. PubMed ID: 28593373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermo-responsive molecularly imprinted sensor based on the surface-enhanced Raman scattering for selective detection of R6G in the water.
    Li H; Wang X; Wang Z; Jiang J; Wei M; Zheng J; Yan Y; Li C
    Dalton Trans; 2017 Aug; 46(34):11282-11290. PubMed ID: 28805859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high performance and highly-controllable core-shell imprinted sensor based on the surface-enhanced Raman scattering for detection of R6G in water.
    Li H; Jiang J; Wang Z; Wang X; Liu X; Yan Y; Li C
    J Colloid Interface Sci; 2017 Sep; 501():86-93. PubMed ID: 28437701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-sensitive imprinted membranes based on surface-enhanced Raman scattering for selective detection of antibiotics in water.
    Wang M; Wang Y; Qiao Y; Wei M; Gao L; Wang L; Yan Y; Li H
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117116. PubMed ID: 31181508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flower-like Ag coated with molecularly imprinted polymers as a surface-enhanced Raman scattering substrate for the sensitive and selective detection of glibenclamide.
    Ren X; Li X
    Anal Methods; 2020 Jun; 12(22):2858-2864. PubMed ID: 32930209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High performance surface-enhanced Raman scattering from molecular imprinting polymer capsulated silver spheres.
    Guo Y; Kang L; Chen S; Li X
    Phys Chem Chem Phys; 2015 Sep; 17(33):21343-7. PubMed ID: 25759203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dummy molecular imprinted polymers coated with silver microspheres via surface enhanced Raman scattering for sensitive detection of benzimidazole.
    Ren X; Feng X; Jin M; Li X
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119321. PubMed ID: 33360208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Detection of Melamine in Tap Water and Milk Using Conjugated "One-Step" Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopic Sensor.
    Hu Y; Lu X
    J Food Sci; 2016 May; 81(5):N1272-80. PubMed ID: 27061315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-sensitive molecularly imprinted sensor with multilayer nanocomposite for 2,6-dichlorophenol detection based on surface-enhanced Raman scattering.
    Li H; Wang Y; Li Y; Qiao Y; Liu L; Wang Q; Che G
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117784. PubMed ID: 31740121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy.
    Hu Y; Feng S; Gao F; Li-Chan EC; Grant E; Lu X
    Food Chem; 2015 Jun; 176():123-9. PubMed ID: 25624214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecularly imprinted 3D SERS sensor with inorganic frameworks for specific and recyclable SERS sensing application.
    Liao W; Wang Q; Hao J; Huang L; Zheng L; Yin Z; Chen Y; Zhou Y; Liu K
    Mikrochim Acta; 2023 Jan; 190(2):50. PubMed ID: 36629926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman scattering based determination on sulfamethazine using molecularly imprinted polymers decorated with silver nanoparticles.
    Jiang GY; Liu L; Wan YQ; Li JK; Pi FW
    Mikrochim Acta; 2023 Apr; 190(5):169. PubMed ID: 37016038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MIPs-SERS Sensor Based on Ag NPs Film for Selective Detection of Enrofloxacin in Food.
    Neng J; Wang Y; Zhang Y; Chen P; Yang K
    Biosensors (Basel); 2023 Feb; 13(3):. PubMed ID: 36979542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of α-tocopherol in vegetable oils using a molecularly imprinted polymers-surface-enhanced Raman spectroscopic biosensor.
    Feng S; Gao F; Chen Z; Grant E; Kitts DD; Wang S; Lu X
    J Agric Food Chem; 2013 Nov; 61(44):10467-75. PubMed ID: 24099154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and quantification of chloramphenicol in milk and honey using molecularly imprinted polymers: Canadian penny-based SERS nano-biosensor.
    Gao F; Feng S; Chen Z; Li-Chan EC; Grant E; Lu X
    J Food Sci; 2014 Dec; 79(12):N2542-9. PubMed ID: 25393060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of SiO
    Guo H; Ren X; Song X; Li X
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 291():122365. PubMed ID: 36652805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A.
    Ren X; Cheshari EC; Qi J; Li X
    Mikrochim Acta; 2018 Apr; 185(4):242. PubMed ID: 29610992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and Sensitive Detection of Pentachloronitrobenzene by Surface-Enhanced Raman Spectroscopy Combined with Molecularly Imprinted Polymers.
    Neng J; Liao C; Wang Y; Wang Y; Yang K
    Biosensors (Basel); 2022 Jan; 12(2):. PubMed ID: 35200313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A polydopamine-based molecularly imprinted polymer on nanoparticles of type SiO
    Li H; Wang X; Wang Z; Wang Y; Dai J; Gao L; Wei M; Yan Y; Li C
    Mikrochim Acta; 2018 Feb; 185(3):193. PubMed ID: 29594666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly selective detection of l-Phenylalanine by molecularly imprinted polymers coated Au nanoparticles via surface-enhanced Raman scattering.
    Zhou J; Sheth S; Zhou H; Song Q
    Talanta; 2020 May; 211():120745. PubMed ID: 32070625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.