These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28594044)

  • 21. Remarkable Visible-Light Photocatalytic Activity Enhancement over Au/p-type TiO
    Fu A; Chen X; Tong L; Wang D; Liu L; Ye J
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24154-24163. PubMed ID: 31190526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts.
    Wang S; Gao Y; Miao S; Liu T; Mu L; Li R; Fan F; Li C
    J Am Chem Soc; 2017 Aug; 139(34):11771-11778. PubMed ID: 28777568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A bi-overlayer type plasmonic photocatalyst consisting of mesoporous Au/TiO2 and CuO/SnO2 films separately coated on FTO.
    Naya S; Kume T; Okumura N; Tada H
    Phys Chem Chem Phys; 2015 Jul; 17(27):18004-10. PubMed ID: 26094620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrical tuning effect for Schottky barrier and hot-electron harvest in a plasmonic Au/TiO
    Sun Z; Fang Y
    Sci Rep; 2021 Jan; 11(1):338. PubMed ID: 33432085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.
    DeSario PA; Pietron JJ; DeVantier DE; Brintlinger TH; Stroud RM; Rolison DR
    Nanoscale; 2013 Sep; 5(17):8073-83. PubMed ID: 23877169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface Reconstruction for Preparation of Plasmonic Au/TiO₂ Nanoparticle with Perfect Hetero Interface and Improved Photocatalytic Capacity.
    Yuan G; Ping C; Zhao Q; Cao M; Jin Y; Ge C
    J Nanosci Nanotechnol; 2018 Jul; 18(7):5088-5094. PubMed ID: 29442698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ALD-Developed Plasmonic Two-Dimensional Au-WO
    Karbalaei Akbari M; Hai Z; Wei Z; Detavernier C; Solano E; Verpoort F; Zhuiykov S
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10304-10314. PubMed ID: 29509409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen evolution from water based on plasmon-induced charge separation at a TiO
    Kao KC; Kuroiwa Y; Nishi H; Tatsuma T
    Phys Chem Chem Phys; 2017 Nov; 19(46):31429-31435. PubMed ID: 29159348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ligand-exchange assisted formation of Au/TiO2 Schottky contact for visible-light photocatalysis.
    Ding D; Liu K; He S; Gao C; Yin Y
    Nano Lett; 2014 Nov; 14(11):6731-6. PubMed ID: 25329925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays.
    Shuang S; Lv R; Xie Z; Zhang Z
    Sci Rep; 2016 May; 6():26670. PubMed ID: 27215703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide.
    Naya S; Niwa T; Kume T; Tada H
    Angew Chem Int Ed Engl; 2014 Jul; 53(28):7305-9. PubMed ID: 24863051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interfacial States in Au/Reduced TiO
    Henrotte O; Kment Š; Naldoni A
    J Phys Chem C Nanomater Interfaces; 2023 Aug; 127(32):15861-15870. PubMed ID: 37609381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable Nonthermal Distribution of Hot Electrons in a Semiconductor Injected from a Plasmonic Gold Nanostructure.
    Cushing SK; Chen CJ; Dong CL; Kong XT; Govorov AO; Liu RS; Wu N
    ACS Nano; 2018 Jul; 12(7):7117-7126. PubMed ID: 29945441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing long-lived plasmonic-generated charges in TiO2 /Au by high-resolution X-ray absorption spectroscopy.
    Amidani L; Naldoni A; Malvestuto M; Marelli M; Glatzel P; Dal Santo V; Boscherini F
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5413-6. PubMed ID: 25752827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystallographic interface control of the plasmonic photocatalyst consisting of gold nanoparticles and titanium(iv) oxide.
    Naya SI; Akita A; Morita Y; Fujishima M; Tada H
    Chem Sci; 2022 Nov; 13(42):12340-12347. PubMed ID: 36349270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the role of localized surface plasmon resonance in UV-Vis light irradiated Au/TiO₂ photocatalysis systems: pros and cons.
    Lin Z; Wang X; Liu J; Tian Z; Dai L; He B; Han C; Wu Y; Zeng Z; Hu Z
    Nanoscale; 2015 Mar; 7(9):4114-23. PubMed ID: 25665512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing hot electron flow generated on Pt nanoparticles with Au/TiO2 Schottky diodes during catalytic CO oxidation.
    Park JY; Lee H; Renzas JR; Zhang Y; Somorjai GA
    Nano Lett; 2008 Aug; 8(8):2388-92. PubMed ID: 18572970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size-Dependence of the Activity of Gold Nanoparticle-Loaded Titanium(IV) Oxide Plasmonic Photocatalyst for Water Oxidation.
    Teranishi M; Wada M; Naya S; Tada H
    Chemphyschem; 2016 Sep; 17(18):2813-7. PubMed ID: 27320206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis.
    DeSario PA; Pietron JJ; Dunkelberger A; Brintlinger TH; Baturina O; Stroud RM; Owrutsky JC; Rolison DR
    Langmuir; 2017 Sep; 33(37):9444-9454. PubMed ID: 28723093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.